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Abstract— There have been many researches on moving
object detection and tracking. There are also great needs in
trajectory analysis and scene modeling so that to provide higher
knowledge to surveillance and ITS application for decision
making. However in crowded environment, trajectory data sets
obtained through online processing contain many broken, group
and fragment ones, which degrades trajectory quality, affect
the performance in trajectory analysis and scene modeling. A
trajectory processing algorithm is developed in this research
on a multi-laser sensing system that was developed in our
previous work. It contains a trajectory association algorithm,
where an interaction graph is built to represent the relationships
of trajectories; a graph-based trajectory labeling algorithm;
and an EM-based trajectory parameter optimization algorithm.
Experiments are conducted using the data collected at an
intersection in Beijing with promising results demonstrated.

I. INTRODUCTION

With the development of applications in ITS (Intelligent
Transportation System) and surveillance, there is a great deal
of needs to the method of moving object detection and track-
ing, e.g. in crowded traffic environments. Many researches
have been devoted to video-based analysis, as cameras are
getting cheaper with high image quality. Cameras can be
installed on roadside to detect and track the pedestrians [1],
vehicles [2] and general objects [3]. An extensive review
to the current state-of-the-art in the development of visual
surveillance systems is given in [4]. In addition to video-
based approaches, laser scanners are getting more popular in
robotics field, which are normally set on a robot or vehicle
platform to detect obstacles and prevent from collision (e.g.
[5]). Methods have also been developed using stationary laser
scanners to detect and track pedestrians at an environment
[6]. In order to take advantage of both camera and laser
scanner, a framework architecture for multi-modal network
sensing is proposed in [7], and fusion-based approaches
using both laser and video have also been developed [8].

Based on the results of moving object detection and
tracking, trajectory analysis and scene modeling are also
active research topics. D. Makris [9] studies a semantic
model of transportation scene. Infrastructure semantics of
public area are analyzed using pedestrian trajectories in [10]
and [11], Driving lanes on highway road are extracted with
vehicle trajectories in [12] and [13].

Normally, trajectory analysis algorithms require that the
results of moving object detection and tracking are of
good quality. However, these are not always the case in
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many of the online systems at crowed scenes. For example,
there might be many wrong trajectories which happened
in cluttered situations: one moving object might hijack the
trajectory of another when they crossed; the trajectory of a
moving object might be broken due to occlusions, yielding
a number of trajectory segments; the data of moving objects
might cling together when they are close to each other, so
that a trajectory of the grouped objects is tracked; the data of
a single moving object might split into a number of clusters,
yielding a number of fragment trajectories; etc. These wrong
trajectories will influence the subsequent trajectory analysis
dramatically. A procedure that refining the quality of online
trajectories is required before forwarding them to the module
of trajectory analysis.

There have been many researches dealing with the dif-
ficulties in moving object detection and tracking. However,
most of them try to solve the problem in online procedures. A
dynamic programming based data association is developed in
[14]. Multiple hypothesis tracker can produce better tracking
results [15]. Dynamic template based tracking works well in
occlusion situations [16]. There have also been researches
aiming at finding out and solving wrong trajectories. In order
to connect trajectory segments, a trajectory linking method
is developed in [17]. Measurement graph is used to find
trajectories of groups and fragments in [18]. Based on the
framework of Bayes network, fuzzy logic is used to find
wrong trajectories in [19] and [20]. An inference graph is
introduced to label the trajectories as object, fragment or
group in [21].

A multi-laser based sensing system has been developed in
our previous work, where a number of networked horizontal
laser scanners were set on different locations, covering a
horizontal plane of a large dynamic environment, such as
an intersection; an algorithm of moving object detection
and tracking on the multiple horizontal laser sensing data
was developed; a number of experiments were conducted
at the crowded intersection in central Beijing, as a result,
the trajectories of pedestrians, bicycles, cars and buses that
passed through the scenes were obtained during a long time
span. However, the trajectory data quality are not as good
due to the large amount of broken, group and fragment
trajectories.

This paper focus on solving the problems of broken, group
and fragment trajectories that frequently occur in the online
processing of moving object detection and tracking, so as
to provide a better data set for trajectory analysis and scene
modeling. The trajectory set that obtained through multi-laser
sensing are used in this research, however, we believe that
some parts of the algorithm are also adaptable to visual-based



processing. Major contributions of this research are:
1) A trajectory association algorithm is developed, where

an interaction graph is built to represent the relationships of
trajectories;

2) A graph-based trajectory labeling algorithm is de-
veloped that labels trajectories into objects, fragments and
groups;

3) An EM-based trajectory parameter optimization algo-
rithm is developed, which refine trajectory parameters with
restrictions to both motion dynamics and observed data, i.e.
multi-laser sensing data.

The rest of the paper is organized as follows. In section
2, a brief introduction to the multi-laser sensing system that
was developed in our previous research is given first, as well
as an outline to this research. Each processing module of
this research will be addressed in details in section 3, 4 and
5, including trajectory association, labeling and parameter
optimization. Experimental results and discussion are given
in section 6, followed by a conclusion and future work.

II. SYSTEM OUTLINE

In this section, the multi-laser sensing system that provides
the input data to this research is introduced first, followed
by an outline to the algorithm developments of the research.

A. Multi-Laser Sensing System

An image of the multi-laser sensing system setting is given
in Fig.1. Laser scanners are set on roadside profiling the
intersection from different locations. Each is controlled by
a client computer, which collects raw measurements from
the sensor and performs preliminary processing on local
scan data, such as background subtraction and clustering
(i.e. extracting the data clusters of moving objects). All
client computers are connected through a network to a server
computer. The server computer collects laser scans as well
as local processing results from all client computers, and
conducts data integration—coordinate calibration and time
synchronization. After data integration in server computer,
an integrated frame that assembling the data from all laser
scanners provides a view that describing a more complete
horizontal contour of the moving objects at the moment.
With the input of integrated data, moving object detection,
tracking, classification, trajectory processing and trajectory
analysis are executed subsequently.

Fig.2 displays the multi-laser sensing system’s tracking
results in an intersection at Beijing. Compared with video
based tracking results, our tracking results provide more
accurate state parameters such as direction and position.
But there are more trajectory broken events in our tracking
results due to the lack of color and texture information. Two
trajectory broken events happened between frame 290 and
frame 320 in Fig.2 (around by red circle).

A number of experiments of long time span have been
conducted at the intersections in central Beijing, which are
famous of their crowdedness. Large amount of trajectory
data have been collected through the online-based procedure
of moving object detection and tracking, which capture the

Fig. 1. Multi-laser sensing system

Fig. 2. Trajectories acquired by the multi-laser sensing system

motions of pedestrians, bicycles, cars and buses that passed
the intersections. A set of trajectory data is visualized in
Fig.3, where color denotes for different motion patterns.
Some of the data sets can also be found at our website
http://www.poss.pku.edu.cn. However, the data sets are not
perfect, as there exist many incomplete and erroneous tra-
jectories. This research aims at developing an algorithm to
refine the trajectory qualities so as to be used in trajectory
analysis and scene modeling.

(a) X-Y plane (b) X-Y-T coordinate space

Fig. 3. Trajectory clustering result

B. Outline of the Research

A three-step trajectory processing algorithm—trajectory
association, labeling and parameter optimization—is pro-
posed in the paper. In trajectory association, the events
of trajectory split, merge and broken are detected, through
which an interaction graph is generated. Each node of the



graph denotes for a trajectory, a link connecting two nodes
represents for their relationship. In trajectory labeling, an in-
ference is conducted on the interaction graph, through which
all trajectories are labeled as object—a perfect trajectory,
fragment—a trajectory of a segment of moving object, or
group—a merged trajectory of a number of moving objects.
In trajectory parameter optimization, an EM-based method is
developed to refine trajectory parameters by constricting on
both motion dynamics and observation data, e.g. multi-laser
sensing data. The algorithm details of each processing are
introduced below.

III. TRAJECTORY ASSOCIATION

We borrow the idea from B. Bose [21] that the inclu-
sion of tracking targets are defined as the relationships
of corresponding trajectories. There are two steps in this
procedure. First, the events of trajectory split, merge and
broken are detected, from which the relationships between
different trajectories are examined. Secondly, an interactive
graph is generated on all trajectories, representing their inter-
relationships. We explain each step below in details.

A. Split, Merge and Broken Events

In order to examine the relationships between different
trajectories, we have to find out all split, merge and broken
events. A split event means that the trajectory of a single
moving object is split into several ones, which start at the
same time point, overlap temporally, while parallel spatially.
Here, the word ”same” means that within a certain threshold,
the two points can be matched to one. A merge event means
that the trajectories of a number of moving objects merge
into a grouped one, where the number of trajectories ended
at the same spatial and temporal time point. A broken event
means that the trajectory of a single moving object is broken
into a sequence of trajectory segments, which do not overlap
temporally, while keep certain continuity spatially.

Normally, a perfect trajectory, which describes the motion
of a moving object from its enter to exit of the scene, should
has its start and end points on the marginal area of the scene.
In other words, if a trajectory has its start point or end point
located on the center area of the scene, it is considered as a
participant in split, merge or broken event. Temporally, split
event is one-to-many relationship, merge event is many-to-
one, and broken event is one-to-one. Three rules are defined
to find out these events.

1. If a trajectory t ends in the center area, we try to find
whether there are several trajectories, which start near t’s
end point shortly after t ends. t is considered splitting into
f1, ..., fk if trajectories f1, ..., fk are found.

2. If a trajectory t starts in the center area, we try to find
whether there are several trajectories, which end near t’s start
point shortly before t starts. f1, ..., fk is considered merging
into t if trajectories f1, ..., fk are found.

3. If a trajectory t starts in the center area, we try to find
whether there is only one trajectory, which ends near t’s start
point shortly before t starts. It is considered that a broken
event happens between t and f , if trajectory f is found.

(a) 11 trajectories tracked in 10 frames

(b) Split, merge and broken events detected

(c) Initial interaction graph built with
the 3 rules

(d) Interaction graph

Fig. 4. An example of interaction graph building algorithm

B. Interaction Graph Building Algorithm

An interaction graph is generated with each node denotes
for a trajectory; edges between different nodes are drawn
through the detection of split, merge and broken events; a
direction is associated to each edge, e.g. a → b, denoting
that trajectory b corresponds (or partially) to the tracking
target with trajectory a. An interaction graph is generated
based on the following three rules.

1. For each trajectory, a node is generated at the interaction
graph.

2. A directed edge b → a is added into the graph if
trajectory a merges into trajectory b.

3. A directed edge a → b is added into the graph if
trajectory a is split into trajectory b.

Fig.4(a) gives an example. 11 trajectories are tracked
during 10 frames as shown in Fig.4(a), where different
trajectories are denoted by colors. Split, merge and broken
events are detected in Fig.4(b), and an interaction graph is
generated based on the above three rules in Fig.4(c). For
example, a split event is detected from trajectory 9 to 10 and
11, so that two directional edges 9→ 10, 9→ 11 are added
into the graph; a merge event is detected from trajectories 5
and 6 to 8, two directional edges 8 → 5, 8 → 6 are added
subsequently. We call Fig.4(c) an initial interaction graph as
there exist many nodes (i.e. trajectories) that correspond to
the same objects, which are merged subsequently to generate
a final one as shown in Fig.4(d).

In detecting nodes of the same objects, the concept of



Target-Set Units introduced by B. Bose [21] is referred. A
leaf node’s tracking target cannot be further decomposed
into subsets. So we call a leaf node’s tracking target Target-
Set Unit(TSU). Every node in the graph can be represent
by corresponding TSUs. If two nodes have the same TSUs,
they should be merged as they track the same target. Take
Fig.4(c) as an example, we use {a} to represent node a’s
corresponding tracking target. The set of target-set units is
{2, 3, 5, 6, 7, 10, 11}. Then we can find that {1} = {2, 3} =
{4} = {5, 6} = {8}, {7, 8} = {9} = {10, 11}. So we merge
node 1, 4, 8 and build the interaction graph in Fig.4(d).

Some directed edges are also added into interaction graph
due to the inclusion of nodes’ corresponding TSUs. If the
TSUs of node a includes the TSUs of node b, and there is
no directed edge a→ b in the graph, a new edge a→ b will
be added into the graph.

After the node merging and edge adding step, the interac-
tion graph which displays the relationships of trajectories is
built (Fig.4(d)).

IV. TRAJECTORY LABELING

Let’s give definitions to the labels for trajectories first.
Object denotes for a trajectory of a single moving object;
Group for that corresponds to a group of several moving
objects; Fragment for a trajectory which is tracked on a
data segments of a moving object.

Recall the definitions to split/merge/broken events in
previous section. There are four possible situations for a
split event. Group − Group: a Group trajectory is split
into several several Group trajectories. Group − Object:
a Group trajectory is split into several Object trajectories.
Object − Fragment: an Object trajectory is split into
several Fragment trajectories. Fragment − Fragment:
a Fragment trajectory is split into several Fragment
trajectories. Similarly, there are four possible situations for
a merge event, and four possible situations of relationships
at the interaction graph accordingly.

In order to optimize trajectory parameters, it is impor-
tant to infer the state of each trajectory node through its
relationships with others: whether it is a group, an object
or a fragment. With the interaction graph as the input, a
trajectory labeling algorithm is developed by restricting on
two conditions: shape coherency and motion coherency. In
the followings, the two conditions are defined first, inference
and labeling algorithm are described subsequently.

A. Condition 1 - Shape Coherency

1) Definition: Every moment, the shapes of all fragment
trajectories that consist of an object are consistent with
the object’s contour. In order to give the mathematical
description of shape coherency, we should introduce the
shape model we use here.

2) Shape model: We borrow the definition to shape model
from H. Zhao [22], which acts as a fundamental concept
in moving object detection and tracking using multi-laser
sensing data. The shape model is briefly described below.

Suppose a laser scanner does counterclockwise scanning,
the horizontal contour of a car is measured by a sequence
of laser points from s to e. Simplifying the shape of a car
using a rectangle, edges that representing two vertical sides
of the car could be detected through a corner detector and
line fitting on the laser points. According to the scanning
order in laser points, e.g. from a later measured point to an
earlier one, a directional vector vi is defined associating with
each edge (see in Fig.5(a)). No matter where a laser scanner
is placed, the directional vectors vi are equal if they are the
observations to the same side of the object.

The definition of shape model is given below (see in
Fig.5(b)). Here we simplify objects using a rectangular
model. Four directional vectors v1, v2, v3, v4 are the four
sides of the moving object. The length of the object is len1,
while the width is len2 (len1 ≥ len2). p is the center of the
object. var is the variation of distances from laser points on
the object to corresponding sides, which describes the match
degree of observed data and shape model. dir is the direction
of the object. speed is the instantaneous speed of the object,
while acc is the instantaneous acceleration.

(a) The directional vectors (b) The shape model and parame-
ters

Fig. 5. Definition of shape model

3) Evaluation: Now we give the mathematical description
of shape coherency. Assume there are several trajectories
t1, t2, ..., tn. In a frame f they all exist, the observed data set
s consists of these trajectories’ corresponding observed data
ob1, ob2, ..., obn. The shape model m is extracted from data
set s, while every laser point in s corresponds to a directional
vector in m. As already stated, the shape model parameter
var describes the match degree of observed data set s and
shape model m. Here we assume that var follows zero-mean
Gaussian distribution(positive axis). If the tracking targets of
t1, t2, ..., tn are fragments of the same object, the variance σ2

v

of the distribution should be small. Otherwise the variance τ2v
of the distribution should be large. After all, the possibility
that trajectories t1, t2, ..., tn meet the condition of shape
coherency (denoted by s) is

p(s(t1, ..., tn) = true|var)
∝ p(s(t1, ..., tn) = true) ∗ p(var|s(t1, ..., tn) = true)

= 0.5 ∗ 1/σv ∗ Φ(var/σv) (1)

Meanwhile, the possibility that they don’t meet the con-



dition of shape coherency is

p(s(t1, ..., tn) = false|var)
∝ p(s(t1, ..., tn) = false) ∗ p(var|s(t1, ..., tn) = false)

= 0.5 ∗ 1/τv ∗ Φ(var/τv) (2)

After normalization, the possibility of shape coherency
p(s(t1, t2, ..., tn) = true|var) is calculated. If it is lager
than a threshold (e.g. 0.7), we consider that trajectories
t1, t2, ..., tn meet the condition of shape coherency.

B. Condition 2 - Motion Coherency

1) Definition: Every moment, the motion parameters of
all fragment trajectories that consist of an object, such
as instantaneous speed speed and direction dir, are quite
similar.

2) Evaluation: The mathematical description of motion
coherency is given below. Considering two trajectories t1, t2,
we assume the difference of speed—∆speed and the angle
between their dir—∆dir both follow zero-mean Gaussian
distribution. If the tracking targets of t1, t2 are fragments
of the same object, the variance σ2

s of ∆speed’s distribution
should be small, so does the variance σ2

d of ∆dir. Otherwise
the variance τ2s , τ

2
d are both large. Then the possibility that

t1, t2 meet the condition of motion coherency (denoted by
m) is

p(m(t1, t2) = true|∆speed,∆dir)
∝ p(m(t1, t2) = true) ∗ p(∆speed,∆dir|m(t1, t2) = true)

= 0.5 ∗ 1/σs ∗ Φ(∆speed/σs) ∗ 1/σd ∗ Φ(∆dir/σd) (3)

Meanwhile, the possibility that they don’t meet the condition
of motion coherency is

p(m(t1, t2) = false|∆speed,∆dir)
∝ p(m(t1, t2) = false) ∗ p(∆speed,∆dir|m(t1, t2) = false)

= 0.5 ∗ 1/τs ∗ Φ(∆speed/τs) ∗ 1/τd ∗ Φ(∆dir/τd) (4)

After normalization, the possibility of motion coherency
p(m(t1, t2) = true|∆speed,∆dir) is calculated. Consider-
ing several trajectories t1, t2, ..., tn, we find two trajectories
ti, tj with the minimum possibility of motion coherency.
This minimum possibility is set as the motion coherency
possibility of trajectories t1, t2, ..., tn. If it is lager than a
threshold (e.g. 0.7), we consider that trajectories t1, t2, ..., tn
meet the condition of motion coherency.

p(m(t1, t2, ..., tn) = true|∆speed,∆dir)
= min

i,j
{p(m(ti, tj) = true|∆speed,∆dir)} (5)

C. Inference

Considering a parent node p and child nodes c1, c2, ..., ck,
the exact situation of the relationship can be classified
preliminarily based on the two conditions. Two rules used
to classify the exact situation are given below.

a) If trajectories stored in c1, c2, ..., ck meet shape co-
herency and motion coherency, we consider that the child

(a) Interaction graph (position of
nodes are rotated to make it
clear)

(b) Bottom-up processing 1

(c) Bottom-up processing 2 (d) Checking uncertain nodes

Fig. 6. An example of trajectory labeling algorithm

nodes’ tracking targets are fragments, while the parent node
is object or fragment.

b) If trajectories stored in c1, c2, ..., ck don’t meet shape
coherency or motion coherency, we consider that the child
nodes’ tracking targets are objects, while the parent node is
group.

Some prior knowledge are used to restrict possible situa-
tions.

c) If ci is labeled as fragment, its parent p could be
fragment, object or group.

d) If ci is labeled as object or group, its parent p must be
group.

D. Trajectory Labeling Algorithm

The trajectory labeling algorithm has two steps. The first
step is a bottom-up processing that labels most nodes based
on the two rules. The second step is a top-down processing
that checks all uncertain nodes based on the prior knowledge.

1) Bottom-up processing: Consider a node p. If p is a leaf
node, we mark it as checked. If nodes c1, c2, ..., ck are child
nodes of p, we start to check p when c1, c2, ..., ck are all
marked as checked. A node can be labeled as uncertain if
the exact label can’t be inferred temporarily. Based on rules
a) and b), all node are labeled as uncertain, fragment, object
or group.

2) Checking uncertain nodes: Firstly, any root node la-
beled as fragment is updated to object. Then a top-down
processing is proposed based on prior knowledge c) and d).
Finally, every uncertain node is labeled as fragment, object
or group. Fig.6 displays an example of the trajectory labeling
algorithm with the interaction graph generated in Fig.5.

V. TRAJECTORY PARAMETER OPTIMIZATION

With the trajectories correspond to a single moving object
have been associated, their multi-laser sensing data are used



(a) (b)

(c) (d)

Fig. 7. An example of trajectory parameter optimization algorithm
dealing with fragments. The box represents the state of trajectory. The area
represents the observed data. (a) The initial states and observed data. (b) A
state sequence with low expectation. The prior probability is too low. (c) A
state sequence with low expectation. The likelihood measure is too low. (d)
A state sequence with high expectation.

to find an optimized estimation to trajectory parameters,
where an EM (Expectation Maximization) based algorithm
is developed. We introduce EM algorithm based trajectory
optimization first, then briefly describe the processing flow.

A. EM Algorithm based Trajectory Optimization

Let ost = {os1, os2, ..., ost} denotes for the initial state
sequence of a trajectory T , and dt = {d1, d2, ..., dt}
be its observation sequence, i.e. multi-laser sensing data.
An EM algorithm based iteration is conducted to refine
the state estimations. Suppose a state sequence st[i] =
{s[i]1, s[i]2, ..., s[i]t} is obtained at the ith iteration. For the
i + 1th iteration, the state parameters are refined on the
objective function as follows.

st[i+ 1] = arg max
s
{Es[lnP (dt|s)]} (6)

Where s is constrained on st[i] with a threshold ε.

for each sjεs, dist(sj , s[i]j) < ε

Let ss be a sampling sequence of s where

for each ssjεss, dist(ssj , sj) < ε

The expectation Es[lnP (dt|s)] is calculated with all possible
sample sequence ss.

Es[lnP (dt|s)] =

∫
ss

lnP (dt|s) ∗ p(ss)dss (7)

Where P (dt|s) the likelihood measure, p(ss) the prior
probability. The estimation to them are defined below.

1) The likelihood measure: P (dt|s) is the likelihood mea-
sure denoting for that given state sequence s, the probability
an observation dt be measured. It is estimated as follows.

P (dt|s) = P (d1, ..., dt|s1, ..., st)
= Πi {P (di|si)}
= Πi {1/ν ∗ Φ(vari/ν)} (8)

(a) (b)

(c) (d)

Fig. 8. An example of trajectory parameter optimization algorithm dealing
with groups. (a) The initial states and observed data. (b) A state sequence
with low expectation. The prior probability is too low. (c) A state sequence
with low expectation. The likelihood measure is too low. (d) A state
sequence with high expectation.

vari is the shape model parameter var of state di and
observation si. It is used again to estimate the state likelihood
at time i, and it is assumed that vari is a zero-mean Gaussian
distribution with a variance ν2.

2) The prior probability: p(ss) is the prior probability
denoting the coherency of state sequence ss. Normally, the
trajectory of a moving object changes its state smoothly. ∆X
is the difference of X at time i, i+ 1. ω1, ω2, ω3, ω4, ω5 are
weights of corresponding parameter changes, which are set
manually. Then the prior probability is estimated as follows.

P (ss) = 1/µ ∗Φ(∆ssi/µ) (9)
∆ssi+1 = ω1 ∗∆len1 + ω2 ∗∆len2 + ω3 ∗∆speed

+ ω4 ∗∆dir + ω5 ∗∆acc (10)

Where the changes of state parameters like len1, len2,
speed, dir and acc are used to describe the change of states
between time i, i+ 1. The arithmetic mean value of change
of states, which is a zero-mean Gaussian distribution with a
variance µ2, is used to estimate the prior probability of state
sequence.

An example of parameter optimization on common track-
ing error Object−Fragment−Object is displayed in Fig.7;
while Object−Group−Object in Fig.8.

B. Processing Flow

After trajectory association and labeling, each node in
the interaction graph represents a tracking target labeled as
fragment, object or group. Consider a moving object obj.
Every object trajectory that tracks obj correctly is stored in
the corresponding object node n. Every group trajectory that
tracks a group of obj and other objects is stored in a node
n’s parent node. Every fragment trajectory that tracks a part
of obj is stored in a node n’s child node. Therefore, we
can acquire the complete state and observation sequences
of obj based on the trajectories stored in object node n,
corresponding group nodes and fragment nodes. The EM



algorithm based iteration is conducted then, which ends when
the amount of state updating is less than a given threshold
or iteration times exceed a given number.

VI. EXPERIMENTAL RESULTS

A large amount of trajectory data have been collected
at the central intersections in Beijing using a multi-laser
sensing system [22]. As the trajectories were tracked through
an online-based processing of moving object detection and
tracking, there exist many broken, group and fragment ones,
which greatly degrade the quality of trajectory data sets,
affect the performance in trajectory analysis and scene mod-
eling.

An experiment is conducted in this research using a data
set that was collected through a 20 minutes acquisition
(44785 frames of multi-laser sensing data), and contains
6281 trajectories (see in Table 1).

A number of typical results are picked up and shown
in Fig.9 and Fig.10. The figures on the left column show
the trajectories tracked through the online processing of
detection and tracking, while the right ones are the results
after trajectory processing. The shape model of each detected
object is represented using a rectangle in light blue, a line
as well as a number associated to the rectangle denotes for
the trajectory and ID of the moving object.

Fig.9 demonstrates the processing results for fragment
trajectories, which are marked using red circles. For example
at frame 530, a split event happened to the data of a car,
yielding two trajectories 141 and 23, while after processing,
the two fragment trajectories are merged successfully, and
trajectory parameters get refined, e.g. the shape model is
more accurate, and the trajectory line is more smooth.

Fig.10 demonstrates the processing results for group tra-
jectories. As marked in red circles, two pedestrians with
trajectories 442 and 496 approached to each other at frame
1550, crossed at frame 1600 then left. At the online tracking
results, trajectories 442 and 496 got merged at frame 1550,
yielding a new trajectory 576. However, when they left from
each other, a split event happened yielding new trajectories
again, i.e. 576 and 591. At the results after processing, it can
be found that the pedestrians keep their ID during and after
crossing, and their trajectories correctly represent their path
and motion parameters.

However some limitations of the algorithm are also found
through the experiment as marked in yellow circle in Fig.9.
Due to the lack of observation (laser points), shape model
parameters of the object can not be correctly estimated. The
trajectory line is not smooth, which reflects that there are
large vibrations in the trajectory parameters. Such kind of
problems are to be solved through the future work.

Table 1 gives a count to the experiment. After trajectory
processing, the number of trajectories are reduced from 6281
to 4195 through the processing of 310 group, 1033 fragment,
and 1826 broken trajectories in 20 minutes at a 2.53GHz PC.

TABLE I
A COUNT TO THE EXPERIMENT

Period 07:00-07:20, a.m.
Frames 44785

Number of trajectories before processing 6281
Number of trajectories after processing 4195

Number of group trajectories 310
Number of fragment trajectories 1033
Number of broken trajectories 1826

VII. CONCLUSIONS AND FUTURE WORKS

There have been many researches on moving object de-
tection and tracking. There are also great needs in trajec-
tory analysis and scene modeling so that to provide higher
knowledge to surveillance and ITS application for decision
making. However in crowded environment, trajectory data
sets obtained through online processing contain many bro-
ken, group and fragment ones, which degrades the perfor-
mance in trajectory analysis and scene modeling. A trajectory
processing algorithm is developed in this research on a multi-
laser sensing system that was developed in our previous
work. It contains a trajectory association algorithm, where
an interaction graph is built to represent the relationships of
trajectories; a graph-based trajectory labeling algorithm; and
an EM-based trajectory parameter optimization algorithm.
Experiments are conducted using the data collected at an
intersection in Beijing with promising results demonstrated.

REFERENCES

[1] C. Pai, H. Tyan, Y. Liang, H. Liao, and S. Chen, ”Pedestrian Detec-
tion and Tracking at Crossroads”, Pattern Recognition, vol.37, no.5,
pp.1025-1034, 2004.

[2] R. Kasturi, D. Goldgof, P. Soundararajan, V. Manohar, J. Garofolo,
R. Bowers, M. Boonstra, V. Korzhova, and J. Zhang, ”Framework
for Performance Evaluation of Face, Text, and Vehicle Detection and
Tracking in Video: Data, Metrics, and Protocol”, IEEE Trans. Pattern
Analysis and Machine Intelligence, vol.31, no.2, pp.319-336, 2009.

[3] Z. Kim, ”Real Time Object Tracking based on Dynamic Feature
Grouping with Background Subtraction”, Proc. Computer Vision and
Pattern Recognition, 2008.

[4] M. Valera1, S. A. Velastin, ”Intelligent Distributed Surveillance Sys-
tems: A Review”, IEEE Proc. Vision, Image and Signal Processing,
vol.152, pp.192-204, 2005.

[5] T. Vu, O. Aycard, and N. Appenrodt, ”Online Localization and
Mapping with Moving Object Tracking in Dynamic Outdoor Envi-
ronments”, Proc. Intelligent Vehicle Symposium, pp.190-195, 2007.

[6] J. Cui, H. Zha, H. Zhao, and R. Shibasaki, ”Laser-Based Detection
and Tracking of Multiple People in Crowds”, Computer Vision and
Image Understanding, vol.106, pp.300-312, 2007.

[7] Oh Songhwai, L. Schenato, P. Chen, and S. Sastry, ”Tracking and
Coordination of Multiple Agents Using Sensor Networks: System
Design, Algorithms and Experiments”, Proceedings of the IEEE,
vol.95, pp.234-254, 2007.

[8] J. Cui, H. Zha, H. Zhao, and R. Shibasaki, ”Tracking Multiple People
using Laser and Vision”, IEEE Int. Conf. Intelligent Robots and
Systems, pp.2116-2121, 2005.

[9] D. Makris, T. Ellis, ”Learning Semantic Scene Models from Observing
Activity in Visual Surveillance”, IEEE Trans. Systems, Man, and
Cybernetics, Part B: Cybernetics, vol.35, pp.397-408, 2005.

[10] N. Brandle, D. Bauer, and S. Seer, ”Track-Based Finding of Stopping
Pedestrians C A Practical Approach for Analyzing a Public Infrastruc-
ture”, Proc. Intelligent Transportation Systems, pp.115-120, 2006.



(a) Online tracking results (b) Parameter optimization results

Fig. 9. Trajectory processing results (fragment)

[11] D. Biliotti, G. Antonini, and J. P. Thiran, ”Multi-Layer Hierarchical
Clustering of Pedestrian Trajectories for Automatic Counting of People
in Video Sequences”, IEEE Workshop Motion and Video Computing,
vol.2, pp.50-57, 2005.

[12] X. Wang, K. Tieu, and E. Grimson, ”Learning Semantic Scene Models
by Trajectory Analysis”, Eur. Conf. Computer Vision, 2006.

[13] J. Melo, A. Naftel, A. Bernardino, and J. Santos-Victor, ”Detection and
Classification of Highway Lanes Using Vehicle Motion Trajectories”,
IEEE Trans. Intelligent Transportation Systems, vol.7, pp.188-200,
2006.

[14] P. Kumar, S. Ranganath, K. Sengupta, and W. Huang, ”Cooperative
Multitarget Tracking With Efficient Split and Merge Handling”, IEEE
Trans. Circuits and Systems for Video Technology, vol.16, pp.1477 -
1490, 2006.

[15] Z. Khan, T. Balch, and F. Dellaert, ”Multitarget Tracking with Split
and Merged Measurements”, Proc. Computer Vision and Pattern
Recognition, vol.1, pp.605-610, 2005.

[16] L. J. Latecki, R. Miezianko, ”Object Tracking with Dynamic Template
Update and Occlusion Detection”, Int. Conf. Pattern Recognition,
pp.556-560, 2006.

[17] A. G. A. Perera, C. Srinivas, A. Hoogs, G. Brooksby, and W. Hu,
”Multi-Object Tracking Through Simultaneous Long Occlusions and
Split-Merge Conditions”, Proc. Computer Vision and Pattern Recog-
nition, pp.666-673, 2006.

[18] Y. Ma, Q. Yu, and I. Cohen, ”Multiple Hypothesis Target Tracking Us-
ing Merge and Split of Graph’s Nodes”, Int. Sym. Visual Computing,
vol.4292, pp.783-792, 2006.

[19] P. Nillius, J. Sullivan, and S. Carlsson, ”Multi-Target Tracking-Linking
Identities using Bayesian Network Inference”, Proc. Computer Vision

(a) Online tracking results (b) Parameter optimization results

Fig. 10. Trajectory processing results (group)

and Pattern Recognition, vol.2, pp.2187-2194, 2006.
[20] J. Sullivan, S. Carlsson, ”Tracking and Labelling of Interacting Mul-

tiple Targets”, Eur. Conf. on Computer Vision, pp.619–632, 2006.
[21] B. Bose, X. Wang, and E. Grimson, ”Multi-Class Object Tracking Al-

gorithm that Handles Fragmentation and Grouping”, Proc. Computer
Vision and Pattern Recognition, 2007.

[22] H. Zhao, J. Cui, H. Zha, K. Katabira, X. Shao, and R. Shibasaki,
”Sensing an Intersection Using a Network of Laser Scanners and Video
Cameras”, IEEE Intelligent Transportation Systems Magazine, vol.1,
no.2, pp.31-37, 2009.

[23] T. K. Moon, ”The Expectation-Maximization Algorithm”, IEEE Signal
Processing Magazine, vol.13, pp.47-60, 1996.

[24] J. A. Bilmes, ”A Gentle Tutorial of the EM Algorithm and its
Application to Parameter Estimation for Gaussian Mixture and Hidden
Markov Models”, International Computer Science Institute, vol.4,
1998.


