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Abstract— Lane change is one of the most principle driving
behaviors on structure roads. It frequently happens in daily
driving. A key issue in lane change technique is trajectory
planning, where a set of trajectories describing possible vehicle
motions are generated by applying a parametric function, and
by uniformly sampling the end states in configuration space;
the trajectories are then examined to find an optimal one for
execution. However, such a trajectory set has poor efficiency due
to the large sample number. Many trajectories in this set seldom
happen in real human driving behaviors. In this research, lane
change trajectories are collected from real driving data of
different drivers. Their statistics are analyzed, through which, a
simplified trajectory set is generated. Experiment results show
that the trajectory set has much less number of samples but can
still guarantee to cover usual lane change behaviors of human
being.

I. INTRODUCTION

A. Motivation

An advanced intelligent vehicle is usually equipped with
three modules: perception, decision and execution .Percep-
tion module finds the host vehicle’s pose (i.e. location and
orientation), and monitors road and other traffic participants
at its local surroundings using sensors such as GPS/IMU,
camera, LiDAR, radar and so on. Based on such information,
decision module aware driving situation through risk assess-
ment, prediction etc., makes a ”good” decision for maneuver.
Execution module converts the decision to either messages
for driving assistant or control commands for autonomous
driving. In this research, we focus on the trajectory planning
for lane change behavior, which is a key issue in decision
module.

Lane keeping (or car following) and lane change are two
principal driving behaviors on structure roads, which happen
frequently in daily driving. Comparing with lane keeping or
car following, which is well studied [1][2] with many ma-
ture techniques being applied in commercial products, lane
change is more complicated. A key issue in lane change tech-
nique is trajectory planning. A trajectory is planned, which
satisfies the host vehicle’s non-holonomic constrains, and
then optimized considering the indices such as safety, time
and comfort, and more importantly, is in line with human
driving behaviors. There have been many researches on lane
change trajectory planning [3][4][5], a classic framework
contains the following steps: 1) sampling the host vehicle’s
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future states (e.g. in 2 seconds) and constructing a set of
end state candidates; 2) a set of trajectories (trajectory set)
that describing possible vehicle motion paths are generated
by applying a parametric function to an initial state with
each end state candidate; 3) examining the trajectories to
find an optimal one for execution, according to an objective
function on the indices such as safety, time and comfort.
A key issue here is how to sample the candidate states so
that it can cover various cases in daily lane change behavior.
A common solution is to sample the configuration space of
future states using uniform lattice. Though all the trajectories
in the uniformly sampled space are guaranteed to be feasible
for vehicle’s maneuver, many of them are seldom used by
human being in real driving situation. These trajectories rise
computation cost and degrade efficiency of the planner.

Inspired by human lane change behaviors, this work
propose a method to simplify the above traditional trajectory
set through learning from the real driving data of different
drivers, where a trajectory set that representing the usual lane
change behaviors is generated, so that online computation
can be conducted with more focus and efficiency. This
research is described as a function in the driving behavior
learning module, which is an offline procedure to generate
models for online inference and planning.

B. Related Work

From the 2007 DARPA Urban Chanllenge competition for
intelligent vehicles in simplified urban scenarios, to the on-
road driving experiment of Google driveless vehicle, driving
behavior research in urban scenario becomes more and more
active. Lane change behavior is one of the most important
part of daily urban driving. There are a lot of research
work on this topic. Authors of [3] constructs a roadmap
for highway lane change in traffic simulation application.
Authors in [4] develop an optimal trajectory generation
method for dynamic highway scenarios which is able to
plan for safe lane change and overtaking behaviors. State
lattice is used for trajectory generation in dynamic on-road
driving scenarios in [5]. These algorithms select an optimal
solution from a set of trajectories which are safe and feasible
for intelligent vehicles. Human drivers’ characteristics are
seldom considered in these work.

There is also a lot of research work which focuses on
human driver. Differential GPS data is used to detect drivers’
lane change behavior in [6]. Steering model are built from
lane change behavior analysis in [7][8]. But these work
usually starts from an assumed model instead of from
human drivers’ lane change data. Researchers in [9][10][11]
compare different drivers at high level but do not focus
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Fig. 1. Research Flow

on detailed trajectory features. A multi model cognitive
framework is proposed in [12] to analyze the motivation
and decision of human drivers. Perception data from vision
system is used to give behavior suggestion in [13] when host
vehicle is close to traffic signals. And work in [14] fuses the
information both from vehicle and driver to detect and predict
the state of human drivers.

Previous work on driver behavior analysis and lane change
motion planning are separated from each other. In our work,
real human driving behaviors are brought into existing lane
change behavior planning framework. We analyze the real
data of human drivers in urban scenario (city ring road for
example) and improve lane change planning benefiting from
the human drivers’ preference which is hard to be formulated
in motion planning problem.

C. Paper Overview

Unlike existing approaches, this paper develops a trajec-
tory set of lane change behaviors, which is a subset of
traditional ones, and is generated through learning from the
real driving data of different drivers. Main contributions
of this paper are 1) a method of extracting lane change
trajectories from the real driving data is proposed; 2) a
lane change trajectory set is developed, which is a subset
of traditional parametric ones, and represents usual human
driving behavior. The research flow is outlined in Fig.1.There
are three main modules as described below:

1) Driving data collection: a vehicle platform is developed
to collect real driving data. It uses GPS to record the vehicle’s
trajectory, IMU to record steering wheel angle, and video
data for examination;

2) Lane change trajectories extraction: the GPS point
sequence is segmented to extract those points belonging to
a lane change by examining steering wheel angle and video
data with human intervention.

3) Trajectory set generation: the real lane change trajecto-
ries are studied to find their major statistical distributions.
They are used to locate the most usual human driving
trajectories, and reject the seldom used ones to reduce the
size of uniform latticed trajectory set.

The rest of this paper is organized as follows. Section 2
introduces the experimental platform for human driving data

Fig. 2. Sensor setting on our data collection platform: POSS-V

collection and the experimental settings. Section 3 studies
data features and gives description to the method of lane
change trajectory extraction. The statistics of real lane change
trajectories are analyzed, and a trajectory set simplification
method is proposed in section 4, followed by conclusion and
future work in section 5.

II. ON-ROAD DRIVING DATA ACQUISITION

In order to collect real human driving data in urban street
scenarios. We develop our data collection platform POSS-V
(PKU Omni Smart Sensing - Vehicle ) as shown in Fig.2.
Different sensors provide different types of data:

1) GPS/IMU integrated system: Records position data of
the host vehicle with time stamps as (𝑥, 𝑦, 𝑧, 𝑦𝑎𝑤, 𝑡) with
10Hz frequency. Lane change trajectory key points can be
extracted from this data if we know the exact beginning and
end time of a single behavior;

2) Steering angle sensor: A small inertial measurement
unit fixed on the steering wheel. It records the steering wheel
operation of human driver with time stamps which have been
synchronized with GPS. Steering angle data can be used
to check the accurate start and end of each lane change
operation;

3) Panoramic Camera: Records video information around
our host vehicle. The recoded images can be used to visually
check each lane change trajectory segmented from GPS
position data;

4) Coarse start/end time of each lane change trajectory is
recorded manually which helps to quickly extract the lane
change behavior.

The experiments are carried on the 3𝑟𝑑 and 4𝑡ℎ ring roads
of Beijing, China. They are the two main urban ring roads of
Beijing. The environment is open with available GPS signal
during most of the time. Some detailed information about
our ring road experiment is shown in Table I

To avoid too much redundant data in traffic jam which is
very common during rush hours in Beijing, we choose to
start experiments at about 14:00 when there is seldom traffic
jam but still a lot of cars on road to interact with our data
collection platform. Drivers of our platform are required to
change lanes or take over other vehicles when it is possible.
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Fig. 3. Experiment on Beijing’s 3rd (red) and 4th ring road driving in
counter-clockwise direction.

TABLE I
EXPERIMENT PARAMETERS

Ring Road 3 Ring Road 4
Distance(km) 48.3 85.3

Design Speed(km/h) 80 80
Experiment Rounds 1 6

Lane Change Trajectories 27 474
Drivers 1 5

The GPS position data from a typical round on ring road 3
is shown in red in Fig.3.

III. LANE CHANGE TRAJECTORY EXTRACTION

Considering the high volume data from perception module,
the first step is to extract lane change trajectories from GPS
points. In this work, we focus on the lane change behaviors
happened on straight lanes. One reason for this is that
according to the driving habits of most drivers, lane change
behaviors are much more probable to be executed on straight
road rather than curve road; another reason is that with the
trajectory generation algorithm introduced in [4] (which will
be recalled in section 3), the states of vehicle are defined in
a moving frame as a two dimension coordinate (longitudinal,
lateral) with respect to a center line which can be the road
shape. So the method we present here almost remains the
same for lane change trajectories on curve road. In current
work, moving obstacles are not considered since we focus
on the generation of a candidate trajectory set which learns
from off-line collected data. But it is sure to be important
to analysis the interaction between other traffic participants
and our host vehicle in future work.

A. Lane Change Behavior Definition

The GPS/IMU integrated system records GPS points se-
quence representing the trajectory shape of our host vehicle
with time stamps. A typical lane change trajectory is shown
in Fig.4.

A typical lane change trajectory on straight road approx-
imately satisfies the following requirements:
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Fig. 4. A typical lane change trajectory

1) The yaw angles are the same at both ends of a lane
change trajectory:

𝑦𝑎𝑤 =
𝑑𝑦0
𝑑𝑥0

=
𝑑𝑦1
𝑑𝑥1

= 0 (1)

2) The curvature at both ends of a lane change trajectory is
zero, which means the steering angle is zero at the beginning
and the end of a lane change behavior:

𝑘 =
𝑑2𝑦0
𝑑𝑥0

2
=

𝑑2𝑦1
𝑑𝑥1

2
= 0 (2)

3) Normal lane change behavior should change just one
lane in a single operation and the host vehicle should not
cross the border of lane when it is not in lane change
operation. Let 𝐷𝑣 be the width of our host vehicle, 𝐷𝑙𝑎𝑛𝑒

represent lane width, it satisfies:

𝐷𝑣 < ∣𝑦1 − 𝑦0∣ < 2𝐷𝑙𝑎𝑛𝑒 −𝐷𝑣 (3)

As a result of limited sensor precision and complicated
human maneuvers, practical lane change behaviors of human
driver do not strictly satisfy these constrains. In the following
2 section, we introduce our data acquisition approach to ex-
tract lane change trajectories approaching to above definition
from GPS point sequences .

B. Data Processing

One problem here is that, though GPS/IMU can return
the yaw angle of the host vehicle, it is not always accurate
enough. In addition, the GPS receiver records position point
data at a frequency of 10Hz. When the host vehicle is running
at 80km/h on ring road, the recorded points are rather coarse.
So we need to do some interpolation between recorded GPS
points. In order to easily get the yaw angle and curvature at
any point along a lane change trajectory and guarantee the
continuity of trajectory and curvature at each GPS point, we
use cubic spline to connect each pair of GPS points.

Given time points {𝑡𝑖}𝑖=0∼𝑛 and GPS points {𝑃𝑖}𝑖=0∼𝑛,
using cubic spline to represent 𝑃𝑖(𝑡) on [𝑡𝑖, 𝑡𝑖+1],

𝑃𝑖(𝑡) = [𝑃𝑖, 𝑃𝑖+1, 𝑅𝑖, 𝑅𝑖+1] ⋅𝑀𝐻 ⋅

⎡⎢⎢⎢⎣
1

𝑡−𝑡𝑖
Δ𝑡𝑖

( 𝑡−𝑡𝑖
Δ𝑡𝑖

)
2

( 𝑡−𝑡𝑖
Δ𝑡𝑖

)
3

⎤⎥⎥⎥⎦ (4)

where 𝑡−𝑡𝑖
Δ𝑡𝑖

∈ [0, 1], Δ𝑡𝑖 = 𝑡𝑖+1 − 𝑡𝑖, 𝑅𝑖(𝑖 = 0, 1, ⋅ ⋅ ⋅ , 𝑛) is
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the tangent vector at 𝑃 (𝑡)𝑡=𝑡𝑖 ,

𝑀𝐻 =

⎡⎢⎢⎣
1 0 −3 2
0 0 3 −2
0 1 −2 1
0 0 −1 1

⎤⎥⎥⎦
let 𝑃 (𝑡) to be 𝐶2, we constrain

𝑃𝑖
′′(𝑡)∣𝑡=𝑡𝑖+1

− = 𝑃𝑖+1
′′(𝑡)∣𝑡=𝑡𝑖+1

+

with boundary conditions

𝑃𝑖
′′(𝑡)∣𝑡=𝑡0 = 𝑅0

′

𝑃𝑛
′′(𝑡)∣𝑡=𝑡𝑛 = 𝑅𝑛

′

we get 𝑛+1 equations to solve the yaw angle and curvature
at each GPS point 𝑃 (𝑡) along a continous trajectory.

C. Lane Change Trajectory Extraction
To extract the lane change trajectory segments is the

foundation of analyzing and learning lane change behaviors.
The key problem to extract such trajectories is to find the
exact start and end time of a lane change behavior. Since the
accuracy of GPS positioning is limited, it is hard to directly
find lane change trajectories according to Eqs.(1) and (2).

In order to solve this problem, we record the steering angle
with a small IMU set on the steering wheel. A normal lane
change trajectory will result in a small wave on the steering
angle curve as shown in Fig.5(a).

The start and end time can be located at the beginning and
the end of the steering angle curve. But another problem is
that in real driving conditions, human drivers are used to
fine adjusting steering wheel frequently to keep the vehicle
on its path. These maneuvers bring in noise into steering
angle information as shown in Fig.5(b). In addition, since a
skilled human driver usually turns the steering wheel slightly
to make a gentle lane change at high speed, it is difficult to
distinguish lane change behavior from these slight tuning
operation only with some naive steering angle amplitude
threshold. In our experiment, we manually record coarse
time of every lane change behavior as a rough result and
then use steering angle data to refine the time accuracy
as shown above. We also use synchronized video images
from panoramic camera as background truth to check if the
extracted lane change trajectories are correct.

When we obtain the human driver lane change trajectories,
we translate and rotate these trajectories to the same origin
with same start orientation. For different drivers, we can
obtain a trajectory set for each of them during his experiment
as shown in Fig.6.

Driver A

Driver B

Driver C

Driver D

Fig. 6. Lane change trajectories of different drivers
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Fig. 7. Uniformly sampled end states in longitudinal and lateral direction

IV. TRAJECTORY SET GENERATION

A. Parametric Trajectory Generation Approach

A trajectory generation method is presented in [4] for
motion planning in street scenario. It can quickly generate
feasible trajectories which are easy to be followed for intel-
ligent vehicles. As shown in Fig.4, a two-dimension frame
is constructed along the road center line. We can construct
uniform lattices with 𝑀 ⋅ 𝑁 end states nearby as shown in
Fig.7. By connecting each of them with the initial state of
a lane change with non-holonomic constrained curves, we
obtain 𝑀 ⋅𝑁 candidate lane change trajectories. Given initial
state of host vehicle, ⎧⎨⎩

𝐷𝑙𝑎𝑡 = 0
𝐷𝑙𝑜𝑛𝑔 = 0
𝑉𝑙𝑎𝑡 = 0
𝐴𝑙𝑎𝑡 = 0

(5)

𝐷𝑙𝑎𝑡 is the lateral offset from center line. 𝐷𝑙𝑜𝑛𝑔 is the
longitudinal distance traveled along the center line. 𝑉𝑙𝑎𝑡 and
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Fig. 8. Uniformly latticed trajectory set(30*20=600 trajectories)

𝐴𝑙𝑎𝑡 are the lateral velocity and acceleration components.
For a sampled end state (𝑑0, 𝑠0),⎧⎨⎩

𝐷𝑙𝑎𝑡 = 𝑑0
𝐷𝑙𝑜𝑛𝑔 = 𝑠0
𝑉𝑙𝑎𝑡 = 0
𝐴𝑙𝑎𝑡 = 0

(6)

these equations mean the lane change trajectory ends at a
state with a lateral offset of 𝑑0 and longitudinal displacement
of 𝑠0 with respect to the initial state with zero final lateral
velocity and acceleration. There is a unique quintic function
curve connecting these two states:⎧⎨⎩

𝐷𝑙𝑎𝑡(𝑠) = 𝑎0 + 𝑎1𝑠+ 𝑎2𝑠
2 + 𝑎3𝑠

3 + 𝑎4𝑠
4 + 𝑎5𝑠

5

𝑉𝑙𝑎𝑡(𝑠) = 𝑎1 + 2𝑎2𝑠+ 3𝑎3𝑠
2 + 4𝑎4𝑠

3 + 5𝑎5𝑠
4

𝐴𝑙𝑎𝑡(𝑠) = 2𝑎2 + 6𝑎3𝑠+ 12𝑎4𝑠
2 + 20𝑎5𝑠

3

(7)

With Eqs.(5)(6)(7) we obtain 6 equations to solve 𝑎0 to 𝑎5, so
that we can get these 6 parameters which describe a quintic
curve. With all the sampled end state connected to the initial
state, we get a uniform latticed trajectory set as show in
Fig.8. As we mentioned in section 1, in such a big trajectory
set, many trajectories are seldom executed by human driver
in real lane change behaviors since they are not the way
human drivers change lanes. And this is the reason why we
try to use human lane change trajectories described in section
3 to simplify this parametric trajectory set.

B. Learning from Human Lane Change

In order to select the trajectories which are more probably
to be executed by human driver, we analyze the end states
of human driver lane change trajectory data in Fig.9(a).

Fig.9(b) separately shows the distribution of end states in
lateral direction and longitudinal direction. For each lateral
offset sample of the lattices, we can count the number of end
states with similar lateral offset (corresponding to the end
states falls into the same band between two yellow line in
Fig.9(a)). Assuming a simple Gaussian distribution (though
not necessarily to be Gaussian), we can draw the distribution
along longitudinal direction of the end states belonging to
the same lateral offset sample (Fig.10(b) left), so can we
do the same for the longitudinal (Fig.10(b) right). Then for
each Gaussian distribution on each lateral or longitudinal
sample value, we manually set a threshold 𝑇𝑠 to find the
interval [𝑥𝑎, 𝑥𝑏] which contains more than 𝑇𝑠% (95% for
example) end states as shown in Fig.10(a). The boundary
𝑥𝑎, 𝑥𝑏 of each interval for each lateral or longitudinal sample
can be connected by closed loop shown in black in Fig.10(b).
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Fig. 9. Then end states distribution
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Fig. 10. Extract the area where most end states locate
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states in common lane change behaviors

These loops will enclose most human drivers’ lane change
end states (red and blue cross) and also contains part of the
uniform lattice(black dot) as shown in Fig.11. For lateral
and longitudinal samples, we can separately obtain two sets
of end states 𝑆𝑙𝑎𝑡 and 𝑆𝑙𝑜𝑛. Conservatively, we take 𝑆 =
𝑆𝑙𝑎𝑡

∩
𝑆𝑙𝑜𝑛 to be the output states set. Set 𝑆 here is the

output of our application which is a smaller sub set of the
uniform lattice. The result simplified trajectory set is shown
in Fig.12(a).

The output set has only 334 trajectories in our experiment
compared with 600 trajectories in uniform latticed trajectory
set in Fig.8. We also use any 6 human drivers’ lane change
trajectory experiment data to compute such a simplified
trajectory set and check if the end states from the other one
group of human driver’s lane change trajectory data is in-
cluded in the simplified trajectory set. As shown in Fig.12(b),
the test trajectories (red trajectories) have almost all the end
states included in our output trajectory set except for some
abnormal lane change behaviors. Sharp break and steering
or complex behaviors in urgent situations such as low speed
lane change in traffic jam or aggressive lane change are not in
our consideration right now. These behaviors usually result in
unusual short lane change trajectories or trajectories crossing
more than one lane.

V. CONCLUSIONS AND FUTURE WORKS
In this research, we present a method to develop a tra-

jectory set of lane change behavior through learning real
driving data of different drivers. We also present a method
of collecting real lane change trajectories by using a ve-
hicle platform carrying GPS, IMU and camera. The real
lane change trajectories are studied to find their statistical
distributions, through which a simplified trajectory set is
generated. Experimental results demonstrate that although
the number of trajectories is greatly reduced in comparison
with traditional trajectory set, it still covers usual human lane
change behaviors. This work will contribute to improve the
efficiency in trajectory planning for lane change behavior.

(a) The trajectory set learnt from human driving

(b) Comparison between human driving data (red) and learnt
trajectory set

Fig. 12. Result simplified trajectory set(a), comparing with the real lane
change trajectories(red, b)
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