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Abstract— In this research, we propose a method of SLAM
in a dynamic large outdoor environment using a laser scanner.
Focus are cast on solving two major problems: 1) achieving
global accuracy especially in non-cyclical environment, 2)
tackling a mixture of data from both dynamic and static
objects. Algorithms are developed, where GPS data and control
inputs are used to diagnose pose error and guide to achieve a
global accuracy; Classification of laser points and objects are
conducted not in an independent module but across the pro-
cessing in a framework of SLAM with moving object detection
and tracking. Experiments are conducted using the data from
two test-bed vehicles, and performance of the algorithms are
demonstrated.

I. INTRODUCTION

Advanced driver assistance system (ADAS) technologies

have been studied extensively to assist cars or drivers in-

telligently. One of the most important tasks of ADAS is for

cars to understand the state of both itself and its environment.

Many research efforts have shown the possibility of detecting

and tracking objects at the front of the car, using a video

camera [17,18], a laser scanner [15,16], or a sensor fusion

[12]. This is reasonable and efficient when a car drives on

a straight path. In a complicated environment, such as an

intersection in a downtown area, Wender [13] masked a ROI

(region of interest) using a CAD map and, detected and

tracked objects insides specified regions.

Our final goal is to enhance driver safety in a dynamic and

unstructured large environment, where the intelligent vehicle

might be close to other moving objects, so that high accuracy

is required for understanding the situation of each object.

We want to detect the moving objects in the surroundings,

and track their states, such as speed, direction, and size, so

that dangerous situations can be predicted. We also want to

generate a map of global accuracy, and locate our vehicle on

it. This is a particularly challenging problem. There could

be two situations. For an unexplored environment, we might

have to do all the things simultaneously, i.e. detect and track

moving objects with simultaneous localization and mapping

(SLAM). For a previously explored environment, a map

could be used to improve the accuracy and efficiency for

localization and moving objects’ detection/tracking. However

this relies on that a clear and accurate map of the dynamic

environment has already been generated.
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In this research, we propose a method of SLAM with

simultaneous detection and tracking of moving objects using

a laser scanner in a dynamic environment. The greatest

difficulty here is the achievement of global accuracy in

SLAM and to tackle a mixture of data from dynamic and

static objects. We will first discuss the major problems below,

then outline the approach of our research.

A. Problem Statement

1) SLAM in general: The simultaneous localization and

mapping (SLAM) problem has been widely studied for

decades. In addition to the problem of SLAM been theo-

retical formulated, many research efforts have demonstrated

its implementation in a number of different domains, such

as indoor, outdoor, underwater and airborne systems. A good

tutorial to SLAM was given by Durrant-Whyte and Bailey

[1,2], which could be a good start to learn SLAM from its

history, achievement, key problems and its future. A broad

survey can also be found in Thrun [3].

The problem of simultaneous localization and mapping

can be formulated as the following probabilistic form, (refer

[1] for details)

p(xk,m|z0:k, u0:k) (1)

where, given a sequence of observation z0:k, a sequence

of control inputs u0:k, the objective is to generate a map (m)
of the surrounding environment, and simultaneously locate

vehicle’s pose xk at m.

The SLAM problem could be parsed on Baye’s rule as

follows.

∝ p(zk|xk,m) × (2)∫
p(xk|xk−1, uk) · p(xk−1,m|z0:k−1, u0:k−1)dxk−1

Here, p(xk|xk−1, uk) is the vehicle’s motion model, and

describes the probability for a state transition. p(zk|xk,m)
is the observation model (also called likelihood function),

and describes the probability of making an observation zk

when a vehicle’s pose xk and a map m of the environment

is known.

The SLAM problem could be solved practically as in-

crementally looking for a vehicle pose of the maximal

probability [7],

xk = arg max
x
−

k

{p(zk|x
−

k , m̂(x1:k−1, z1:k−1)) × (3)

p(x−

k |xk−1, uk)}
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while map m̂(x1:k, z1:k) is considered as an integration

of observations z1:k along vehicle poses x1:k. In order for

the discrimination, x−

k denotes a pose prediction based on

the vehicle’s motion model, and xk denotes the posterior of

pose at time k.

Map consistency could be achieved through the above

formulation, as an observation model confines a match

between the observation and a map. A limitation exists in that

there is no guarantee for the global (or absolute) accuracy in

recovered vehicle pose and the map. Distortion could occur

due to the featureless environment, error accumulation, and

so on. This is crucial when fusing the result with a CAD

map or other data resources.

2) Loop Closure: When the vehicle returns to a previously

mapped region, a problem occurs in which a newly estimated

location of landmarks do not match with previous ones.

Loop closure is used to associate the landmarks in a current

measurement with those in a map database, so that to correct

vehicle pose and subsequently the map. When facing a

large pose error, e.g. after a large loop, or in a cluttered

unknown environment, data association become much harder.

An incorrect data association could cause a catastrophic

failure of the SLAM. Loop closure is finally data association

problem. Many research efforts have focused on improving

the accuracy of data association, e.g. batch gating[4] and

visual appearance[5,6,9], or reduce the risk in erroneous

ones, e.g. multiple hypothesis[7].

However, when applying SLAM in a large outdoor en-

vironment, the vehicle may traverse through complicated

road situations. Requirements of cyclic measurement, and of

limited loop size are strong restrictions to real applications.

Besides data association based solutions, the vehicle needs a

different mean, to diagnose its pose error, and to guarantee

an error bound, even though its trajectory does not cross after

a long trip.

3) Dynamic Environment: Most of the existing SLAM

methods assume that the environment is static. If there is

a moving object, and the data is erroneously associated

with a landmark in the map database, many localization

algorithms will fail, and the map will deteriorate by the data

of the moving object. If we can discriminate the data of a

moving object from those of static ones, the problem could

be solved, as we can send only the data of static objects to

SLAM. However, data discrimination is the key, and in fact

is the greatest obstacle for applying SLAM to a dynamic

environment.

Assuming a previously generated map, Montemerlo [10]

and Schulz [11] localized a robot’s pose on map, and

tracked dynamic objects in the environment. This is efficient

when the robot traverses in a controllable environment. The

problem could be solved in two subsequent steps. First,

generate a clear and complete a map when the environment

is free of dynamic objects. Secondly, localize the robot on

a given map and simultaneously track the moving objects

in the surroundings. Moving object detection here could be

reliably achieved by taking the differential of each scan

with the map. However in an environment that can not

be intentionally controlled, e.g. in a downtown area where

people and cars always exist, a SLAM here must manage

moving objects: the data of moving objects can be detected

and tracked, or discarded, but they can not be added to the

map. Hahnel [7] aimed to generate an accurate map, while

the data from dynamic objects are detected and discarded. In

their approach, a routine is conducted to detect and remove

the data from dynamic objects before sending each scan to

the SLAM module. Moving people are filtered out by using

the local minimal caused by legs, and subsequently creates

a difference map between consecutive scans to remove those

static but people-like objects. Vu [21] and Weiss [22] did

on-line calculation of an occupancy map, and detected the

objects that entered an object-free zone. This idea can be

traced to the pioneering work of Wang [8]. Here the basic

idea is, if an object is observed at the space that defined as

”object-free” by previous scans, it must be a moving one.

However, if an object appear, or even move, at a previously

undeveloped zone, it is difficult to say whether it is static

or moving according to the rule. In addition, laser hits are

affected by the reflections from target objects. It has many

uncertainties. For example, a black object or an object giving

diffused reflection might difficult to be observed from laser

hits; if the incidence angle of laser beam is shallow, the

object might be invisible in laser hits even it is near to the

sensor; etc. It is hard to reliably define an occupancy map

only according to laser hits. In order to discriminate a moving

or static object, a classification routine is required based on

the object’s history record.

B. Outline of the Method

In this research, we propose a method of SLAM with

simultaneous detection and tracking of moving objects in

a dynamic large outdoor environment using a laser scanner

for perception. In order to achieve a map of global accuracy,

especially when the vehicle does a non-cyclical measurement

in a large outdoor environment, we propose a trajectory-

oriented closure algorithm using occasionally available GPS

signals, where GPS measurements are used to diagnose the

error in vehicle pose estimation, vehicle trajectory is adjusted

to close the gap between the estimated vehicle pose and

GPS measurement. On the other hand, in order to manage

the mixture of data from both dynamic and static objects,

a systematic framework is designed, and examined through

real experiments. In a normal populated environment, it is not

reasonable to suppose a dynamic object moves all the time.

For example, people or cars may remain static for seconds

when they wait for traffic signals. In addition, people and cars

at intersections or parking lots might get very close to each

other, and thus it is risky to define moving or static objects by

buffering an area using a data from other survey technologies

at a previous time point. The general idea of our system is

that for all clusters of a laser scan, we consider them at the

beginning as the measurement to the objects of unknown

class (called ”seed”). Classification of the clusters is not

an independent module, but across the procedures in each

iteration. Moving or static objects are detected by examining
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the seeds on their history of states, e.g. motion vector and

shape, so that our method can also be referred to as a delayed

mapping and tracking. In order to give a thorough explana-

tion to our system, section 2 describes the framework of

SLAM with simultaneous detection and tracking of moving

objects using a laser scanner. The localization and trajectory-

oriented closure algorithm using GPS measurements will be

addressed in section 3. We show experimental results and

includes a discussion in section 4, followed by conclusion

and future works.

II. SLAM WITH MOVING OBJECT DETECTION

AND TRACKING

The problem of SLAM with moving object detection and

tracking is formulated as follows.

p(xk, yk, sk,m|z0:k, u0:k) (4)

where, y denotes the moving object, s are those of

unknown class (seed). It can be further parsed based on the

Baysian rule, if each of the posterior could be analytically

solved.

p(sk|xk,m, z0:k) · p(yk|xk, z0:k) · p(xk,m|z0:k, u0:k) (5)

A measurement zk is a mixture of the data from static,

moving, seed, and newly detected objects. If the mixture can

be classified as follows,

zk = {z
(m)
k , z

(y)
k , z

(s)
k , z

(n)
k } (6)

an estimate to Equ.5 can be achieved sequentially as

follows.

xk = arg max
x
−

k

{p(z
(m)
k |x−

k , mk−1) · p(x−

k |xk−1, uk)}

(7)

yk = arg max
y
−

k

{p(z
(y)
k |xk, y−

k ) · p(y−

k |yk−1)} (8)

s−k = arg max
s
−

k

{p(z
(s)
k |xk, s−k ) · p(s−k |ss−1)}

(9)

mk = m̂(x1:k, z
(m)
1:k ) (10)

For the measurements that could not be associated with

an existing map, any of the moving objects or seeds, new

seeds are generated for each as the newly detected objects,

so that

s+
k = newseed(zk − z

(m)
k − z

(y)
k − z

(s)
k ) (11)

sk = s+
k + s−k (12)

However things are not so easy, as dividing zk into z
(m)
k ,

z
(y)
k , z

(s)
k , z

(n)
k is much difficult. Erroneously classifying a

measurement will cause incorrect data association, so that it

leads to a failure in the system.

Figure 1 shows the framework implemented in our system.

The figure looks trivial. However we consider that technical

details are always very important to ensure that a new

technique can be applied to real situations. Three modules

are highlighted in the figure.

1) Module A: is the estimation of vehicle pose xk, which

will be discussed in detail in the next section.

2) Module B: describes the sequential procedure of di-

viding zk into z
(m)
k , z

(y)
k , z

(s)
k and z

(n)
k . In order to prevent

interference from the data of moving objects in SLAM,

z
(y)
k are first extracted through data association based on

the prediction of existing moving objects y−

k−1 and vehicle

pose x−

k−1. SLAM is conducted by matching the measure-

ment to motionless objects {zk − z
(y)
k } with a local map

covering the region near x−

k−1, which is a cut out from

m̂(x1:k−1, z
(m)+(s)
1:k−1 ), containing the data of both static and

unknown objects (seed). So that estimation of vehicle pose

xk is implemented as follows.

xk = arg max
x
−

k

{p(zk − z
(y)
k |x−

k , m̂(x1:k−1, z
(m)+(s)
1:k−1 ))

· p(x−

k |xk−1, uk)} (13)

With vehicle pose xk, through subtraction with map mk−1,

z
(m)
k are extracted, leaving seeds z

(s)
k and newly measured

objects z
(n)
k at rest.

3) Module C: classifies seeds at the end of each iteration.

Classification is conducted for each seed by examining its

history of motion and shape. Our implementation is shown

in figure 2. It is an extension to our previous work that uses

a stationary laser scanner to monitor moving objects at an

intersection [19], where moving objects are defined into three

classes, i.e. 0-axis (e.g. people), 1-axis (e.g. bicycle), 2-axis

(e.g. car), according to the maximal axes number that could

be detected from an instant measurement of the object. In

order to prevent that a temporarily motionless object be mis-

recognized as a static one, we did very carefully when the

seed is still alive, i.e. be measured by the laser scanner.

For a still alive seed, if an obvious and continuous motion

is detected, it is upgraded to the data base of moving objects;

if its shape is obviously different with predefined models, e.g.

much larger than any possible moving objects, it is added to

map if no motion is detected in its history, or it is discarded as

irregular data, e.g. reflections from the ground which always

happen when the vehicle makes a turn and its platform slants

toward the ground surface.

For an expired seed, we need to explain some trade

offs. Many seeds might get lost before being recognized as

moving or static objects, e.g. exit the measurement range of

the moving laser scanner. Some of them are static objects that

should be integrated into map. Some of them are dynamic

but without enough evidence to distinguish them. These data

could not be added to the map. Some are wrongly extracted

seeds, which should be discarded. However, if a car or a

people remain static during the measurements, it is difficult

to discriminate them with other similar static objects, e.g.
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Fig. 1. Implementation of SLAM with moving objects’ detection and tracking

Fig. 2. Implementation of the classification module

tree, pole, small square objects, etc. In this research, we add

the seeds to map if they remain static during their life. We are

going to integrate visual-based methods to solve the above

problem in a future study.

III. LOCALIZATION GUIDED BY GPS DATA AND

CONTROL INPUTS

A. Outline of the Localization Algorithm

The processing in Figure 3 corresponds to module A of

Figure 1. It describes the flow of estimating vehicle pose

xk, where a scan matching is to achieve local consistency of

the map, control inputs uk and GPS data are used to detect

pose error and to achieve global accuracy. In this research,

control inputs are vehicle speed and yawrate sensor. Nor-

mally, control inputs are used to predict a vehicle pose x−

k ,

which is then updated by maximizing a matching between

observation zk and map mk−1, as defined in Equ.3. This is

a biased definition. Its efficiency relies heavily on whether

the geometric relationship between zk and mk−1 could be

uniquely defined. So that an independent diagnosis method is

required to detect erroneous scan matching. In this research,

we previously train a threshold vector α, which represents the

error bound of control inputs. We convert ∆xk = xk −xk−1

to speed and yawrate (u
(m)
k ), and take the difference with

uk. If the difference is beyond α, than xk is replace using

the predicted state x−

k . An example of training α can be

seen in the next section. On the other hand, whenever a pair

of continuous GPS coordinates with good signal conditions

are measured, a vehicle pose x
(gps)
k could be calculated

based on the GPS coordinates. If the difference with xk is

larger than a previously defined threshold β, which represents
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Fig. 3. Flow of localization algorithm, corresponding to the Module A of
figure 2

the error bound of GPS measurement, a trajectory-oriented

closure is conducted to meet the trajectory’s end point xk

to the GPS measurement x
(gps)
k , while maintaining the local

consistencies of the trajectory. The same algorithm is used

when a trajectory crosses at a certain point. A x
′

k is estimated

by matching the current scan with a previously generated

map, and the trajectory-oriented closure is conducted to meet

xk to x
′

k, while maintaining the local consistencies of the

trajectory.

B. Trajectory-Oriented Closure Algorithm

In this section, we discuss vehicle pose xk using the form

of a transformation matrix Tk from the vehicle (or laser

scanner)’s coordinate system to a global one, while relative

vehicle motion is represented as the relative transformation

of a vehicle’s coordinate system, tij = T−1
i · Tj . Normally,

tij has better local consistencies, and could reflect the local

features of sensor’ motion in detail. However Tk has an

absolute drift due to the error accumulation of tijs. Let T ′

k

represents the transformation matrix of x
(gps)
k or x

′

k. Given

a history of trajectory nodes Ts,...,k, if |Tk − T ′

k| > ET , a

loop closure is conducted by adjusting each ti,i+1, s < i < k

iteratively until |Tk − T ′

k| is smaller than a given threshold

or can no longer be minimized,

In each iteration j, a ∆t
j
i,i+1 is calculated for each

t
j
i,i+1, s < i < k, and t

j
i,i+1 is updated as follows.

∆t
j
i,i+1 =

1

k − s
· tji+1,i+2

−1
...t

j
k−1,k

−1
· (14)

T ′

k · T−1
s · tjs,s+1

−1
...t

j
i−1,i

−1

t
j+1
i,i+1 = ∆t

j
i,i+1 · t

j
i,i+1

Denote t̄i,i+1 and T̄m as the rectified ti,i+1 and Tm

respectively. T̄m, s < m ≤ k are obtained by sequentially

Fig. 4. Pictures of two test-bed vehicles

aligning t̄i,i+1s, s < i < m as follows.

T̄m = T̄m−1 · t̄m−1,m (15)

= T̄s · t̄s,s+1 · ...t̄i,i+1... · t̄m−1,m

IV. EXPERIMENTAL RESULTS

We have developed two test-bed vehicles. Test-bed #1

(Figure 4(a)) is for the purpose of developing the technical

components and algorithms for safe driving, where two

laser scanners, LD-OEM by SICK, are mounted on both

left and right front of the car, monitoring an omni-area of

the vicinity. A video camera is mounted in between the

laser scanners. In this research, we use the video camera to

examine and visualize the results of laser-based processing,

while in future, we are going to fuse both sensors to achieve

higher intelligence and accuracy. Test-bed #2 (Figure 4(b))

is a mobile mapping system, for the purpose of generating

a three-dimensional representation of large outdoor environ-

ment from the viewpoints on the street. Two horizontally

scanning laser scanners, LMS291 by SICK, on the top layer

of the sensor system, are used to achieve high accurate

localization. Both systems have a GPS, a vehicle motion

sensor (or wheel encoder) and a FOG-IMU. Although the

final purpose of the systems are different, both require a

SLAM that tackling moving objects, and both require a

SLAM that has global accuracy in an extensive outdoor

environment. In the followings, we discuss some of the

experimental results focusing on these two aspects.

A. SLAM with Moving Object Detection and Tracking

Figure 5 shows a result sequence of SLAM with moving

object detection and tracking using the data from test-bed

#1. Each result is composed of two screen captures. The

right one shows the processing of laser data, the left one

is the overlapping of the laser-based result onto a video

image for better understanding and visualization. Laser scans

are processed at a rate of 10Hz. The number shown at the

right bottom corner denotes for frame (scan) number. At the

start of measurement (see Frm#090), a car in front of the
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Fig. 6. Definition of the different colors of laser points

Fig. 8. Comparison of the values of control inputs with those from LD
SLAM

test-bed vehicle, as well as other static object nearby, were

measured. Two large piece of wall were recognized soon

as static objects (green points are those in current scan and

recognized as static data), because no motion was detected

from them, and their size exceeded the model of normal

moving object. While for other objects, although no motion

was detected, they may be either static or moving objects, so

that they were treated as seed (water blue). The definition of

the different colors are explained in Figure 6. When the front

car began to move, after a few frames (see Frm #98), it was

proved to be a moving object (red with orange trajectory). At

about Frm#262, the front car began to make a left turn, and it

was soon got lost at Frm#289. When the front car appeared

again at Frm#321, it was treated as a seed at the beginning,

then after a few frames, it was recognized as a moving object

again (see Frm#330). Later the front car made a turn again,

and it was lost from the video image, while still measured

and tracked by the laser scanner (see Frm#417). When the

car entered the video image, it was directly located as a

moving object using the laser-based result (see Frm#426).

Figure 7 gives some of the final results. Figure 7(a) shows

the map and the trajectory of the test-bed vehicle that was

recovered by the algorithm. The experiment was conducted

where many cars were parked in the surrounding area (see

Figure 7(c,d)). It is a difficult question, whether we should

leave the data of parked cars in the map. A parked car is a

temporarily static object. Some of them might start to move

suddenly, while most of them remain static during the period

when they are measured. In this research, we made a rule

that if motion could be reliably detected from an object at

any time during the measurement, it was considered as a

moving one. Otherwise, we treated it as static and integrated

its data into the map. Figure 7(b) shows a labeling result,

where colored points are those labeled to as moving objects,

and color denotes for different ID. As has been discussed in

Figure 5, the front car was lost when it made turns. When it

appeared again, it was detected as a new object and assigned

a different ID.

B. Localization Guided by GPS data and Control Inputs

In the algorithm of Figure 3, control inputs are used to

diagnose and correct pose error, while the GPS data with

good signal conditions, are used to guide for global accuracy,

especially when cyclic measurement is not available. Two

threshold vectors in Figure 3, α and β, need to be defined

previously.

Here we present how we define the threshold vectors

α. In an environment of rich feature/landmarks, pose ge-

ometry could be uniquely decided with high accuracy. In

this research, we did a traditional SLAM (e.g. [20]) at

an environment of horizontal ground and rich geometrical

features, obtained a time series of vehicle pose , and sub-

sequently converted them into a time series for speed and

yawrate (denote these data as LD SLAM). Figure 8 shows

comparisons of the control inputs, yawrate and yaw angle

from FOG-IMU, speed from vehicle motion sensor, with the

values by LD SLAM. It can be found in Figure 8(a) that

the yaw angles from FOG match the LD SLAM in general,

while by taking a difference between them, a tendency

of gradually enlarged residual is obvious (Figure 8(b)).

This is an often seen phenomenon, called Gyro drift. On

the other hand, the residuals between yawrate demonstrate

a uniform distribution, within [-2,2](deg/s) (Figure 8(c)).

Similarly, the residuals between speed are mostly bound

within [-0.5,0.5](m/s) (Figure 8(d)). Thus, the pose updates

with residuals beyond the above ranges are detected and

disregarded.

In this research, the GPS data quality above 2m were used

to diagnose pose error, so that β is assigned to 2m. Figure 9

demonstrates the performance of localization at an extensive

outdoor environment, the global accuracy of which is guided

by the occasional good GPS measurements. Red dots denote

for the GPS data of good qualities. They are selected to

perform a trajectory-oriented closure to meet the vehicle pose

to GPS coordinates. Green dots are the time series of vehicle

pose. For comparison, blue dots represent the results without

GPS adjustment.

C. Time Cost

The experiment is conducted on an off-line mode. After

acquiring data from the test-bed vehicles, the experiment in

1460

Authorized licensed use limited to: Peking University. Downloaded on May 14,2010 at 08:45:48 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5. Experimental results of SLAM with moving object detection and tracking

Fig. 7. Final results of map generation, localization and laser points labeling
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Fig. 9. Results of the localization guided by occasional GPS coordinates

Fig. 10. Computation cost of each frame

Figure 5-7 is conducted using the data from one laser scanner

that covering a range of 200 deg with an angular resolution

of 0.25deg. When processing on a desktop PC that has a

1.8GHz CPU and 2.0GB RAM, the computation cost of each

frame is demonstrated in Figure 10, with an average of 64

millisec per frame. Considering the laser scanning rate of

10Hz, a real-time processing would be available.

V. CONCLUSIONS AND FUTURE WORKS

In this research, we propose a method of SLAM in a

dynamic large outdoor environment using a laser scanner.

Focus are cast on solving two major problems: 1) achieving

global accuracy especially in non-cyclical environment, 2)

tackling a mixture of data from both dynamic and static

objects. Algorithms are developed, where GPS data and

control inputs are used to diagnose pose error and guide

to achieve a global accuracy; Classification of laser points

and objects are conducted not in an independent module but

across the processings in a framework of SLAM with moving

object detection and tracking. Experiments are conducted

using the data from two test-bed vehicles, and performance

of the algorithms are demonstrated.

There are still many research tasks left. A major limitation

of the proposed method is that if a moving object remain

static during the measurement, it is almost impossible to

discriminate it with the static one that has a similar shape

at the scanning plane. In addition, many static objects are

tracked as seed all through their measurement. This is not

efficient, especially when simultaneously processing the data

from a number of laser scanners, the time cost will be

very high. Integrating visual-based methods will be a good

solution for both of the problems. This will be addressed in

our future study.
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