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Abstract—This work is motivated by the following two potential
applications: 1) enhancing driving safety and 2) collecting traffic
data in a large dynamic urban environment. A laser-scanner-based
approach is proposed. The problem is formulated as a simul-
taneous localization and mapping (SLAM) with object tracking
and classification, where the focus is on managing a mixture of
data from both dynamic and static objects in a highly dynamic
environment. A trajectory-oriented closure is also proposed using
the sporadically available global positioning system (GPS) mea-
surements in urban areas to assist for global accuracy, particularly
when the vehicle makes a noncyclical measurement in a large
outdoor environment. Experiments are conducted using the data
that were collected along a course near 4.5 km in a highly dynamic
environment. Possibilities of the approaches toward the two poten-
tial applications are demonstrated, and avenues for future works
are discussed.

Index Terms—Detection, intelligent vehicle, laser scanner,
moving object, SLAM, tracking.

I. INTRODUCTION

OUR goal is to use a vehicle-borne sensor to perceive a
large dynamic urban environment, such as an intersection

or a crowded road in a downtown area. We are motivated by
two potential applications. One is enhancing driving safety,
where it is important to understand the state of both the host
vehicle itself and the objects in its local surroundings. The other
application involves collecting detailed traffic data, such as the
motion trajectories of cars, bicycles, and pedestrians for control
and traffic analysis. In this latter application, it is important to
associate the perceptions of local surroundings with a global
coordinate system, and the traffic data are required to achieve a
certain level of global accuracy. In other words, if a perception
of local surroundings could be registered to a global coordinate
system, other data sources, such as a computer-aided design
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(CAD) map, could be used to assign higher level attributes to
the perceived data. Both tasks could be assembled together as a
perception in a large dynamic environment with both local and
global accuracy. Here, managing the data of a large dynamic
environment and achieving both local and global accuracy are
major concerns.

To assist cars for driving safety, research effort has shown
the possibility of detecting and tracking objects in front of the
car using a stereo [1], [2] or monocular video camera [3], a
laser scanner [4]–[6], or through sensor fusion [7], [8]. This
is reasonable and efficient when a car drives on a straight
path. However, when facing a complicated environment such as
crowded roads and intersections in a downtown area, where the
host vehicle might be close to other moving objects and where a
continuous and reliable global positioning system (GPS) mea-
surement might not be available, a highly accurate perception
to the state of both the host vehicle and the objects nearby
is required for an efficient warning system. Vu et al. [9] and
Weiss et al. [10] performed online calculation of an occupancy
map to detect objects that entered an object-free zone. This idea
can be traced to the pioneering work by Wang [11].

There has been further research effort to collect traffic data
using probe vehicles. Most of it uses GPS to find the speed and
trajectory of the probe vehicle and assumes that these param-
eters somehow reflect the current traffic conditions of the road.
Some probe vehicles have environmental sensors to monitor the
surroundings, such as video cameras, laser scanners, and radars.
Subsequent data processing is still a great difficulty. Gandhi and
Trivedi [12] developed a system platform to detect, classify,
and log the surrounding vehicles using a video camera. Gao
and Coifman [13] proposed a method using a laser scanner to
identify surrounding vehicles and correct GPS errors.

Perceiving a large dynamic environment while achieving
both local and global accuracy is a particularly challeng-
ing problem. The following three approaches are suggested:
1) We can use positioning sensors like GPS/inertial navigation
system (INS) to estimate vehicle pose, and with these as input,
sensors like laser, radar, and camera conduct environmental
perception. This is the most popular one and has been widely
accepted in existing intelligent vehicle (e.g., [14] and [15])
and mobile mapping systems (e.g., [16]). As localization and
environmental perception are conducted individually using dif-
ferent sensing technologies, the system architecture is straight-
forward. However, a disadvantage of such approaches is that
environmental perception is heavily dependent on the output
of localization module. For example, erroneous localization
output might yield displacements between the environmental
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sensing data to the same static objects. Moreover, even with
an expensive GPS/inertial-measurement-unit-based navigation
unit, the motion of slow objects, such as pedestrians, could not
be reliably detected due to localization error. 2) If we suppose
a map of the environment is available, for example, through
previous exploration, then the map could be used to improve the
accuracy and efficiency of localization by map matching [17].
Data on moving objects could then be obtained by subtraction
from the map [18], [19] or by region masking [20]. However,
this relies on the fact that a map of the dynamic environment
with high-enough accuracy has already been generated. 3) We
can combine the inputs from both positioning and environmen-
tal sensors and formulate the localization, mapping, moving ob-
ject detection, and tracking simultaneously as an optimization
problem [9], [11], [21]. This is the most difficult but necessary
approach when exploring an unknown environment without an
expensive positioning system or prior knowledge.

In this paper, we adopt the third approach by integrating a
one-layer horizontally profiling laser scanner with GPS and
yaw rate sensors. As we consider the applications in a down-
town area, where GPS signals might be blocked by buildings,
trees, bridges, etc., and where its accuracy might be degraded
due to multipath problem, it is not reasonable to assume that a
continuous and reliable GPS measurement be always available.
On the other hand, a laser-based simultaneous localization and
mapping (SLAM) can provide much continuous vehicle pose
estimation while achieving more consistency among the envi-
ronmental measurements, i.e., high local accuracy. However,
it suffers from an error-accumulation problem, i.e., low global
accuracy. Based on the above consideration, we use SLAM to
obtain a continuous vehicle pose estimation and use GPS/INS
to assist for global accuracy and robustness.

We propose a laser-based SLAM in a dynamic environment.
Contrasting with other pioneering works such as those of
Hahnel et al. [21], Wang [11], Vu et al. [9], and Weiss et al. [10],
we formulate the problem as a SLAM with object tracking and
classification, where the focus is on managing a mixture of
data from both dynamic and static objects in a highly cluttered
environment. For example, people and cars might get very close
to each other, and their motion patterns have much variability
and are always unpredictable. Thus, it is risky to discriminate
moving or static objects by buffering an area using the data
from a previous measurement. Furthermore, it is risky to judge
based only on an instance measurement, as many objects might
have a similar data appearance due to limited spatial resolution,
range error, partial observation, and occlusion. The general
idea behind our system is that the detected objects should be
discriminated in a spatial–temporal domain. This way, after an
object is detected, it is tracked until the system can classify the
object into either a static or a moving object with certainty.

We also propose a trajectory-oriented closure algorithm us-
ing GPS signals. To achieve a localization of global accuracy,
particularly when the vehicle makes a noncyclical measurement
in a large outdoor environment, the sporadically available GPS
measurements in urban areas are used to diagnose errors in
vehicle pose estimation, and vehicle trajectory is then adjusted
to close the gap between the estimated vehicle pose and the GPS
measurement.

Here, we need to explicitly state that the algorithms and
experimental results presented in this paper are 2-D ones, with
an assumption that the ground surface is almost flat. In the
future, we will extend them to 3-D cases by using a multilaser
scanner or a composition of laser scanners. This paper is orga-
nized as follows. Section II describes the framework of SLAM
with simultaneous detection and tracking of moving objects
using a laser scanner. The localization and trajectory-oriented
closure algorithm using GPS measurements are addressed in
Section III. We present experimental results and discuss some
major topics for future work in Section IV, followed by conclu-
sions in Section V.

II. SLAM WITH OBJECT TRACKING AND CLASSIFICATION

A. Problem Statement

1) SLAM in General: The SLAM problem has been widely
studied for decades. In addition to the problem of SLAM been
theoretical formulated, much research effort has demonstrated
its implementation in a number of different domains, such as
indoor, outdoor, underwater, and airborne systems. A good
tutorial to SLAM was given by Durrant-Whyte and Bailey [22],
[23], which could be a good start to learn SLAM from its his-
tory, achievements, key problems, and future. A broad survey
can also be found in [24].

The problem of SLAM can be formulated as the following
probabilistic form (see [22] for details):

p(xk,m|z0:k, u0:k) (1)

where, given a sequence of observation z0:k and a sequence
of control inputs u0:k, the objective is to generate a map (m)
of the surrounding environment and simultaneously locate the
vehicle’s pose xk at m.

The SLAM problem could be parsed as follows using Bayes’
rule, with the assumption that the system is a Markov:

∝ p(zk|xk,m) ×
∫

p(xk|xk−1, uk)

·p(xk−1,m|z0:k−1, u0:k−1)dxk−1. (2)

Here, p(xk|xk−1, uk) is the vehicle’s motion model and
describes the probability for a state transition. p(zk|xk,m) is
the observation model (also called likelihood function) and
describes the probability of making an observation zk when a
vehicle’s pose xk and a map m of the environment is known.

The SLAM problem could be solved practically as incre-
mentally looking for a vehicle pose of the maximal probability
[21], i.e.,

xk =arg max
x−

k

{
p
(
zk|x−

k , m̂(x1:k−1, z1:k−1

)
×p

(
x−

k |xk−1, uk

)}
(3)

while map m̂(x1:k, z1:k) is considered as an integration of
observations z1:k along vehicle poses x1:k. For discrimination,
x−

k denotes a pose prediction based on the vehicle’s motion
model, and xk denotes the posterior of pose at time k.

Map consistency could be achieved through the formulation
above as an observation model confines a match between the
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observation and a map. A limitation exists in that there is no
guarantee of global (or absolute) accuracy in recovered vehicle
pose or in the map. Distortion could occur due to the featureless
environment, error accumulation, and so on. This is crucial
when fusing the result with a CAD map or other data resources.

2) Loop Closure: When a vehicle returns to a previously
mapped region, a problem occurs in which the newly estimated
location of landmarks does not match with previous ones.
Loop closure is used to associate the landmarks in a current
measurement with those in a map database to correct the vehicle
pose and, subsequently, the map. When facing a large pose error
(after a large loop or in a cluttered unknown environment), data
association becomes much more difficult. An incorrect data
association could cause a catastrophic failure of SLAM. Loop
closure is also a data-association problem. Much research effort
has focused on improving the accuracy of data association,
including batch gating [25] and visual appearance [26], [27],
or reducing the risk in erroneous associations, such as multiple
hypothesis [21].

However, when applying SLAM in a large outdoor envi-
ronment, the vehicle may traverse complicated road situations.
Requirements of cyclic measurements and limited loop size
are strong restrictions to real applications. In addition to data-
association-based solutions, the vehicle needs a different means
to diagnose its pose error and to guarantee an error bound, even
though its trajectory does not cross after a long trip.

3) Dynamic Environment: Most of the existing SLAM
methods assume that the environment is static. If there is a
moving object, and if the data are erroneously associated with
a landmark in the map database, many localization algorithms
will fail, and the map will be deteriorated by the data of the
moving object. If we can discriminate the data of a moving
object from those of static ones, the problem could be solved
by sending only static object data to SLAM. However, data
discrimination is the key and, in fact, is the greatest obstacle
for applying SLAM to a dynamic environment.

Without assuming any prior knowledge of the environment,
and given that the environment cannot be intentionally con-
trolled (e.g., a downtown area where people and cars always
exist), a routine is required to discriminate the data from
moving and static objects before sending them to SLAM or
moving object’s tracking modules. Hahnel et al. [21] filtered
out moving people by using the local minimum caused by legs
and subsequently created a difference map between consecutive
scans to remove those static but people-like objects. An implicit
assumption here is that dynamic objects move all the time
during their measurement. However, this is not reasonable in
normal situations because people and cars may stop for a while.
Furthermore, a classification based only on data appearance
is risky since a person standing still will look similar to a
pole in a horizontal laser scan. In the pioneering work of
Wang [11] and recent research applications [9], [10], moving
objects are detected generally based on the following two rules:
1) If an object entered the object-free zone defined by previous
measurements, it is a moving object, and 2) if an object entered
the zone previously occupied by moving objects, it is a moving
object. Such an approach relies on the following: 1) An object-
free zone is reliably defined, and 2) moving objects are reliably

extracted. However, these are difficult to be met in some cases.
For example, if a laser shoot did not have return, either of
the following might be true: 1) There is no object along the
beam up to range limit, or 2) there is an object but do not give
reflection toward the sensor, e.g., dark objects, mirror reflection,
shallow incidence angle, etc. The no-return-beams bring much
ambiguity in generating a reliable object-free zone. In addition,
as the robot explores an unknown environment, many new ob-
jects might be measured in previously undeveloped or occupied
zones. It is difficult to reliably decide at the moment whether
they are moving or static ones.

The general idea behind our system is that a classification
routine in a spatial–temporal domain is required. This way,
whenever an object is discovered in a newly explored zone, it is
tracked (called “seed” in this paper) until a judge could be given
with a certainty (upgraded to either “static object” or “moving
object”). Therefore, we formulate this task into a problem of
SLAM with object tracking and classification.

B. Proposed Approach

The problem of SLAM in a dynamic environment can be
formulated as follows:

p(xk, yk, sk,m|z0:k, u0:k) (4)

where y denotes the moving object, and s is the object of
unknown class (here, we call it the “seed”).

It can further be parsed as follows based on the Bayes’ rule,
with the assumption that the system is Markov:

= p(sk|xk,m, z0:k) // detection and tracking

· p(yk|xk, z0:k) // tracking problem

· p(xk,m|z, u0:k) // a standard SLAM (5)

where the last item is a standard SLAM, and the first two are
the detection and tracking problems. However, to solve the
posteriors, two implicit problems, i.e., 1) classification of the
measurement data and 2) classification of the detected objects,
have to be solved.

A measurement zk is a mixture of the data from static,
moving, seed, and newly detected objects. If the mixture can
be classified as follows:

zk =
{

z
(m)
k , z

(y)
k , z

(s)
k , z

(n)
k

}
(6)

an estimate of (5) can sequentially be achieved as follows:

xk = arg max
x−

k

{
p

(
z
(m)
k |x−

k ,mk−1

)
·p

(
x−

k |xk−1, uk

)}
(7)

mk = m̂
(
x1:k, z

(m)
1:k

)
(8)

yk = arg max
y−

k

{
p

(
z
(y)
k |xk, y−

k

)
·p

(
y−

k |yk−1

)}
(9)

s−k = arg max
s−

k

{
p

(
z
(s)
k |xk, s−k

)
·p

(
s−k |ss−1

)}
. (10)
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Fig. 1. Implementation of SLAM with object tracking and classification.

For the measurements that could not be associated with an
existing map, any of the moving objects or seeds, new seeds are
generated for each as the newly detected objects so that

s+
k =newseed

(
zk − z

(m)
k − z

(y)
k − z

(s)
k

)
(11)

sk = s+
k + s−k . (12)

Correctly classifying zk into z
(m)
k , z

(y)
k , z

(s)
k , and z

(n)
k is

critical in the estimation of xk, mk, yk, and sk. This task is
quite difficult because of the limited information in an instance
measurement. All the newly detected objects (called “seed”
here) are tracked until they can be classified into either static or
moving object with certainty. Tracking all the detected objects
is time consuming, while an incorrect classification might lead
to a system failure. An efficient and accurate classifier is critical
to the performance of the whole system. In this paper, we solve
both classification problems in systematic ways.

C. Implementation

Fig. 1 shows the framework implemented in our system. The
figure looks trivial. However, we believe that technical details
are always very important to ensure that a new technique can be
applied to real situations. The system uses the following three
kinds of sensor inputs: 1) laser scan; 2) GPS; and 3) control
inputs from both the inertial sensor and wheel encoder. The
system maintains the following four databases: 1) vehicle pose;
2) map; 3) moving objects; and 4) seeds. At each iteration,
given a set of current sensor inputs, the purpose is to update the

state of each database from the previous time stamp (k − 1) to
the current time (k). Iteration continues until the measurement
completes.

Three modules are highlighted in Fig. 1. As the focus of
this paper is not the algorithm of tracking, data association, or
clustering, where we implemented popular methods such as the
Kalman filter [28] and the nearest-neighbor method, we do not
discuss their details.

Module A is the estimation of vehicle pose xk through scan
matching assisted by GPS and control inputs. We apply a
grid-based method (e.g., [11] and [29]) for scan matching. A
pyramid of grid map is used to represent the state of stationary
objects. The value of each grid can be 1 or 0, denoting whether
the grid has been occupied or not. Grid sizes are set from large
to small in different layers so that a coarse-to-fine matching can
be achieved with a limited time cost. Vehicle pose is estimated
by projecting laser scan onto the grid maps and searching for
a pose of best correlation. Localization guided by GPS and
control inputs will be addressed in detail Section III. Modules B
and C correspond to the classification of the measurement data
and seed objects, respectively.

1) Classification of a Measurement Data: Classification of
zk into z

(m)
k , z

(y)
k , z

(s)
k , and z

(n)
k is conducted in a sequential

procedure as described in module B. To prevent interference
from moving object data in SLAM, z

(y)
k are first extracted

through data association based on the prediction of existing
moving objects y−

k−1 and vehicle pose x−
k−1. SLAM is con-

ducted by matching the measurement to motionless objects
{zk − z

(y)
k } with a local map covering the region near x−

k−1,
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Fig. 2. Implementation of seed object classification.

which is a cutout from m̂(x1:k−1, z
(m)+(s)
1:k−1 ) containing the

data of both static and unknown objects (seeds). Estimation of
vehicle pose xk is implemented as follows:

xk = arg max
x−

k

{
p

(
zk − z

(y)
k |x−

k , m̂
(
x1:k−1, z

(m)+(s)
1:k−1

))

·p
(
x−

k |xk−1, uk

) }
(13)

where vehicle pose xk, through subtraction with map mk−1,
and z

(m)
k are extracted, leaving seeds z

(s)
k and the newly mea-

sured objects z
(n)
k at rest.

2) Classification of a Seed Object: A seed can be either
a static or a moving object. Here, we consider the following
moving objects in a normal urban scene: a person, a bicycle,
and a car. Each moving object might remain static temporarily,
e.g., while waiting for a traffic signal. To discriminate such an
object from a permanently static object, we define an object to
be static if it has an exactly different data appearance (e.g., the
size is much bigger) than that of a moving one, and no motion
is detected along its trajectory.

Fig. 2 shows our implementation flow. In classifying a seed,
it is first examined on features such as motion vector and object
size to discriminate it as a static, moving, or still unknown
(seed) object. Classification of moving objects is an extension
to our previous work that uses a stationary laser scanner to
monitor moving objects at an intersection [30]. We consider the
moving objects of people, bicycles, and cars in a normal urban
scene, and the moving objects are characterized as zero-, one-,
and two-axis objects, respectively, according to the maximum
number of axes that could be detected from an instantaneous
measurement of the object.

To prevent a temporarily motionless object from being mis-
recognized as static, we carefully consider the case when the
seed is still alive (i.e., being measured). If an obvious and
continuous motion is detected, the still-alive seed is upgraded
to the database of moving objects. If its shape is obviously
different from predefined models, e.g., much larger than any

possible moving object, it is added to the map if no motion
is detected in its history, or it is discarded as irregular data,
e.g., reflections from the ground, which always occur when
the vehicle makes a turn and its platform slants downward.
Many seeds may expire before being recognized as moving
or static objects, e.g., by exiting the measurement range of
the moving laser scanner. Some of these are static objects that
should be integrated into the map. Others are dynamic but
without enough evidence to distinguish them. These data cannot
be added to the map. Some are wrongly extracted seeds that
should be discarded. As our approach do not rely on scan-based
discrimination, the moving object is able to be detected as long
as it moves during any period of the measurement. However,
we agree that if a moving object remains static during the
measurements, and if its horizontal contour is similar with the
static object like tree, pole, or small square object, it is difficult
to detect based on laser scan only. In this paper, a tradeoff is
taken that we add these seeds to the map. In the future, we
will integrate visual-based methods to solve the aforementioned
problem.

D. Experimental Data

Let us take a closer look at the algorithm in operation on
real data. The experimental data were collected using the LD1
of testbed 1 (see Fig. 7) in a flat environment where many
buildings, trees, poles, and parked cars exist. There is only
one moving object, namely, a car driving in front of the host
vehicle, throughout the experiment. A movie of the result can
be found at the attachment, and Fig. 3 presents snapshots from
the video. Each is composed of two screen captures. The image
on the right shows the processing of laser data, and the one
on the left is a back-projection of the laser-based result onto
a video image for better understanding and visualization of
the algorithm. Laser scans are processed at a rate of 10 Hz.
The number shown at the bottom-right corner denotes the scan
(Frm) number.

When measurement began (see Frm 090), the car in front of
the testbed vehicle, as well as other nearby static objects, was
measured. Two large pieces of wall were recognized quickly
as static objects (green points are those in the current scan that
have been recognized as static data) because no motion was
detected from them, and their size exceeded the model of a
normal moving object. Although no motion was detected from
the objects, they may be either static or moving objects so they
were treated as seeds (water blue). A key to the different colors
can be found in Fig. 4.

When the front car began to move, after a few frames (see
Frm 98), it was proven to be a moving object (red with orange
trajectory). The front car began to make a left turn at about
Frm 262 and was soon lost at Frm 289. When the front car
reappeared in Frm 321, it was initially treated as a seed and
then recognized as a moving object again after a few frames
(see Frm 330). Later, the front car made another turn and was
again lost from the video image, yet still measured and tracked
by the laser scanner (see Frm 417). When the car reentered the
video image, it was directly located as a moving object using
the laser-based result (see Frm 426).
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Fig. 3. Screen captures of the laser-based processing and its back-projection onto a video image to demonstrate the workings of the algorithm.

Fig. 4. Definition to the colors.

Fig. 5 presents some of the final results. To have a global
view of the experimental site, Fig. 5(a) shows the map
(m(x1:k, z

(m)
1:k ) and the trajectory ({x1:k}) of the testbed ve-

hicle that was recovered by the algorithm. The experiment
was conducted with many cars parked in the surrounding area.
Whether we should leave the data of parked cars in the map is
a difficult question.

A parked car is a temporarily static object. Some of them may
start to move suddenly, while most of them remain static during
the period when they are measured. According to the tradeoff
that we discussed previously, if motion could be reliably de-
tected from an object at any time during the measurement, it
was considered to be a moving one. Otherwise, we treated it
as static and integrated its data into the map, which is why the
parked cars are left in the final map.

Fig. 5(b) shows a classification result. Colored points repre-
sent the laser points labeled as moving objects. Color represents
the ID no of the moving object. As discussed in Fig. 3, the front
car was lost when it made turns. When it reappeared, it was
detected as a new object and assigned a different ID no. Some
false alarms also occurred. These are enlarged in Fig. 5(c). Most
of the false alarms occurred only briefly, and their incidence can
be reduced through parameter tuning in classification. However,
a false alarm is shown in Fig. 5(d), which lasted for a long
period of time (trajectory represents the length of the alarm).
A major reason for a false alarm is occlusion, where a static
object looks like a moving one due to partial observation.

III. LOCALIZATION GUIDED BY GPS DATA AND

CONTROL INPUTS

A. Outline of the Localization Algorithm

The processing in Fig. 6 corresponds to module A in Fig. 1.
It describes the flow of estimating vehicle pose xk, where scan
matching is used to achieve local consistency of the map, and
control inputs uk and GPS data are used to detect pose error
and to achieve global accuracy. In this paper, control inputs are
vehicle speed and yaw rate.

Normally, control inputs are used to predict a vehicle pose
x−

k , which is then updated by maximizing a matching between
observation zk and map mk−1. This is a biased definition. Its
efficiency relies heavily on whether the geometric relationship
between zk and mk−1 can be uniquely defined. Thus, an
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Fig. 5. Results of map, vehicle trajectory, moving objects, and false alarms.

Fig. 6. Flow of localization algorithm, corresponding to module A of Fig. 1.

independent diagnosis method is required to detect erroneous
scan matching.

In this paper, we previously trained a threshold vector α,
which represents the error bound of the yaw rate sensor and
speed encoder. We convert Δxk = xk − xk−1 to speed and yaw
rate (u(m)

k ) and take the difference with uk. If the difference is
beyond α, then xk is replaced using the predicted state x−

k .
On the other hand, whenever a pair of continuous GPS

coordinates with good signal conditions is received, a vehicle

pose xgps
k can be calculated based on the GPS coordinates.

If the difference with xk is larger than a previously defined
threshold β, which represents the error bound of GPS measure-
ment, a trajectory-oriented closure is conducted to match the
trajectory’s end point xk to the GPS measurement xgps

k while
maintaining the local consistency of the trajectory.

The same algorithm is used when a trajectory crosses at a
certain point. A x′

k is estimated by matching the current scan
with a previously generated map, and the trajectory-oriented
closure is conducted to match xk to x′

k while maintaining the
local consistency of the trajectory.

B. Trajectory-Oriented Closure Algorithm

In this section, we discuss vehicle pose xk using the form of
Tk, representing a transformation matrix from the vehicle (or
laser scanner’s) coordinate system to a global one.

Let T ′
k denote the transformation matrix of xgps

k or x′
k, rep-

resenting a different estimation of vehicle pose, with reduced
error compared to Tk. The objective is to modify the vehicle
trajectory Ts,...,k to reduce the gap ΔTk = T ′

k − Tk.
Let tij = T−1

i · Tj represent the relative vehicle motion from
time stamp i to j. Recalling (13), the current vehicle pose xk

is updated from the previous estimation xk−1 by taking the
matching of the current scan with an online generated map.
The general idea here is to estimate vehicle motion Δxk (i.e.,
tk−1,k) by scan matching and to align it on xk−1 to compose the
current vehicle pose xk (i.e., Tk = tk−1,k · Tk−1).

Normally, tij has better local consistency and could reflect
the local features of sensor motion in detail. However, it might
be erroneous in the case where the vehicle’s relative motion
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Fig. 7. Testbed vehicles and their sensor configurations.

could not be determined by scan matching. The absolute drift
of Tk has its origin in the error accumulation of tijs. A brute-
force modification of Tk might break the consistency in scans
that is achieved by tijs.

In this paper, instead of directly modifying Ts,...,k, an adjust-
ment Δti,i+1 is estimated for each ti,i+1, s < i < k to match
Tk with T ′

k, i.e.,

T ′
k = ti+1,k · (Δti,i+1 · ti,i+1) · ts,i · Ts (14)

Δti,i+1 = t−1
i+1,k · T ′

k · T−1
s · ts,i

−1 · ti,i+1
−1. (15)

An iterative modification is conducted. In each step, the
Δti,i+1 that has the smallest norm is selected, representing the
best efficiency in matching Tk to T ′

k. The ti,i+1 and Tm,∀m ∈
(i, k] are adjusted as follows:

t̄i,i+1 = γ · Δti,i+1 · ti,i+1

T̄m =Ts · ts,i · t̄i,i+1 · ti+1,m, ∀m ∈ (i, k] (16)

where 0 < γ < 1 is a scaling factor. If γ = 1, then T̄k will
exactly meet on T ′

k, yielding the error ΔTk shift to ti,i+1. To
distribute the error ΔTk to a number of ti,i+1’s, here, we set
γ = 0.1. The iteration continues until |ΔTk| is smaller than a
given threshold ε or can no longer be reduced.

IV. EXPERIMENTAL RESULTS

Fig. 7 shows the testbed vehicles used in this work. The
sensor configurations of the testbeds are slightly different, but
their functions are similar, and their data are processed using
the same approaches. We present a set of experimental results,
focusing on the possibility of improving driving safety and
on traffic data collection in a large populated environment.
Here, we need to make clear that both experimental results
demonstrated below are achieved in an offline mode shortly
after the data collection. Furthermore, in each testbed vehicle, a
video camera is mounted and calibrated with the laser scanner.
In this paper, they are used to examine and visualize the results

Fig. 8. Experimental course.

of laser-based processing. In the future, we will fuse both
sensors to achieve higher intelligence and accuracy.

A. Sensor, Data, and Software

The experimental data were collected using testbed 2 in
Fig. 7. Here, we describe the sensor configuration and data
setting of the experiment. A laser scanner (LMS291 from
SICK) is mounted at the front of the testbed vehicle, monitoring
a wide angle (180◦ and 0.5◦/point) of the vicinity with a scan
rate of about 37.5 Hz. The data are downsized to 10 Hz during
processing, considering the performance and computation effi-
ciency. A differential GPS (DGPS) is used in the following two
scenarios: 1) Localization: When the GPS signals are in good
conditions, and its difference with estimated position is larger
than a predefined threshold, the DGPS measurement is used to
correct the estimated trajectory points. 2) Accuracy evaluation:
All the DGPS measurements are used to find their difference
with the estimated results. As the yaw rate sensor and wheel
encoder were not ready in the experiment, we produced the
values using the GPS data. To guarantee a certain reliability
of the estimation, we choose only continuous GPS values of
good signal condition with the vehicle running on a straight
path (refer to {gk}). The values of yaw angle {yk} and speed
{sk} are calculated from {gk} so that the control inputs in
this experiment are temporally broken segments. On the other
hand, the coupled values {xgps

k } = {gk, yk} (see the red dots in
Fig. 11) are used to adjust the trajectory of the testbed vehicle to
achieve global accuracy. All the software used in the experiment
are developed in C/C++ under MS Windows. The time stamps
for different sensor data are basically the personal computer
clock.

B. Experimental Course

The experimental course is shown in Fig. 8, where the testbed
vehicle started from the campus of Peking University along the
light gray arrows (left campus at the west vehicle’s gate), ran
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Fig. 9. Some screen captures of the laser-based processing and its back-projection on the video image. An experiment in a highly populated environment.

Fig. 10. Some of the failure cases.

on public roads along the black arrows, and entered the campus
at the east vehicle’s gate. The course lasted for 4.5 km, and the
run took 15 min following the normal traffic flow. The course
inside the campus is very crowded with pedestrians, bicycles,
and parked cars. The course outside the campus is also very
dynamic, composed of a number of intersections and crowded
roads. The vehicle speed was limited to 20 km/h inside the
campus and about 30–40 km/h outside the campus. This is the
most challenging of all the data sets that we have collected.

C. SLAM With Object Tracking and Classification

When applied to improving driving safety, if the perception
results are not to be associated with other data resources, global
accuracy is not a requirement. However, accuracy in perceiving
the local surroundings is very much required, particularly in a
populated environment where the host vehicle might be close
to other objects. Such local accuracy involves detecting and
classifying the objects in the local vicinity, along with tracking
and estimating their states, such as speed, direction, and size.

Fig. 9 demonstrates some of the experimental results on
SLAM with object tracking and classification. Nine pairs of
results are presented, each containing a screen capture of the
processing program on laser scans, as well as a back-projection
of the current laser scan onto the corresponding video image for
visualization.

Colors have the same meaning as in Fig. 4. The laser points
of current scans are labeled as static, moving, and seed objects,
which are colored in green, red, and blue, respectively. They

are consistent in both results. To gain better understanding,
the green arrow lines in each pair of results are manually
drawn, denoting the correspondences between the laser points
in different views.

The results are indexed, and their locations are denoted
in Fig. 11. Note that most moving objects are successfully
detected and tracked (marked in red), particularly those near the
testbed vehicle. The laser scanner is very efficient at monitoring
a wide angle of the surrounding environment, as demonstrated
in result 3. Although we can only find one person in the video
image, the laser data captured three in the vicinity. The motion
trajectories of moving objects are also clearly grasped. For
example, in result 4, two people did not notice the existence
of the testbed vehicle initially, and later, they walked away.

In the case of a group of persons, the program shows unstable
results. For example, in result 6, the groups were tracked
successfully. However, in later frames, a person in the right
group walked slightly apart from the others so that one more
cluster was detected and many state parameters of the trajectory
showed discontinuous change. This iterated a couple of times.
Finally, in result 7, the trajectories were rejected as unreliable,
and a new seed object was created. Results 8 and 9 are the detec-
tions on public roads, which are crowded with cars and bicycles.

The accuracy of moving object detection is examined by
back-projecting laser points on the video image and comparing
to human assessment. In total, the data of 362 moving objects
(trajectories) are back-projected onto the video images, while
four of them are false alarms and 11 others are missed in the ex-
periment. Some of the failure cases are demonstrated in Fig. 10.
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Fig. 11. Comparison of the localization results.

Since alarms beyond the viewing range of video images
cannot be confirmed, we do not count any such false alarms that
might exist. An example of a false alarm is shown in Fig. 10(a).
Generally speaking, the system works well at detecting moving
people. Except for people keeping static throughout their mea-
surement, which are judged as static objects according to our
tradeoff rule, all moving people (i.e., pedestrians) have been
detected.

However, the detection results on bicycles and cars are not
as good. Some results on bicycles are shown in Fig. 10(b) and
(c). All of them are detected as seed objects, while some failed
to be classified as moving objects. To prevent false alarms, our
system carefully examined the continuities in motion vectors.
In the case that the data appearance changes dramatically,
estimation of motion vector might be erroneous so these could
be discarded as wrong detections. These also happen in the case
of cars. Cars also have another problem, as shown in Fig. 10(d)
and (e). For a dark car, few range points are measured so the car
may either be missed or detected as a different kind of object.

To reduce the failure cases, it will be necessary to improve
the current implementation as well as to fuse with other sensing
technologies.

D. Localization Guided by GPS Data and Control Inputs

In the sense of traffic data collection in a large populated
environment, a localization of global accuracy is the major
premise. Fig. 11 compares some of the localization results.
The red dots, which are denoted by “GPS,” are the {xgps

k }
that are picked up for adjustment, while the large white dots,
which are denoted by “Adjust point,” are a subset of {xgps

k }
that truly functioned in adjustment. The black dots, which are
denoted by “NN,” are the localization results that had assistance
from neither {yk}, {sk}, nor {xgps

k }, except that an initial
vehicle pose is assigned by {xgps

0 }. This had a catastrophic
failure in scan matching and aborted halfway. The blue dots,
which are denoted by “WN,” are generated with the assistance
of {yk} and {sk} but without trajectory-oriented loop closure

Fig. 12. Difference between the GPS coordinates and estimated trajectory
points.

Fig. 13. Final maps of both static and dynamic objects in a highly populated
environment.

using {xgps
k }. A large global error occurred. Reasons may be

found in the erroneous scan matching in a highly dynamic en-
vironment and error accumulation during a long and noncyclic
measurement.

The green dots, covered by other dots in many places and
denoted by “WW,” are generated with the assistance of {yk},
{sk}, and {xgps

k }. The threshold β in Fig. 6 represents the
reliability of GPS measurement. Here, we set it to 10 m,
which means that the trajectory-oriented loop closure will be
conducted only when the distance from the estimated trajectory
point to {gk} is larger than 10 m. The reason for such a setting
is that we do not intend to make the system rely on an expensive
precision GPS, while a normal navigation GPS has an error of
about 10 m. In addition, we set the threshold ε in trajectory-
oriented closure be ε = 0.7 ∗ β, as we do not intend to meet the
trajectory points exactly on GPS values considering its localiza-
tion error. Residuals are taken between all the GPS coordinates
with the estimated trajectory points of the same time stamp,
regardless of whether it belongs to {xgps

k } or not. They are
shown in Fig. 12. As described before, the experimental course
can be divided into in- and out-campus sections, where the
host vehicle drives in different traffic conditions with different
speed. Gray dots in Fig. 12 denote the residuals for the in-
campus section, triangles for the out-campus one, and black
for adjust points (in accordance with Fig. 11). It is obvious
that residuals of the in-campus section are lower than those
of the out-campus one. This might be due to the better GPS
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Fig. 14. (a) Computation cost and (b) number of objects tracked in each frame.

condition and less density of dynamic objects in the in-campus
section. While almost all the dxs and dys in Fig. 12 are within
or near the boundary of 10 m, demonstrating the algorithm has
efficiently achieved a certain global accuracy.

E. Final Results

A global map, containing the data of both static and dynamic
objects, with a pixel size of 5 cm × 5 cm, is generated by sum-
marizing the local perceptions to a global coordinate system.
Three areas, i.e., A–C, in Fig. 11 are enlarged in Fig. 13. The
black pixels on the map denote static objects. Colored pixels
denote moving objects, and different colors represent different
moving objects. This demonstrates that after a run of the testbed
vehicle, a global map of the environment, containing the infor-
mation of both static and dynamic objects, can be generated. In
addition, the speed and trajectory of both the host vehicle itself
and the objects (e.g., cars, pedestrians, and bicycles) observed
along the street can be recorded simultaneously with respect to
a global coordinate system, i.e., many traffic data samples can
be obtained through a single run.

F. Time Cost

The experiment was conducted by measuring data first, and
processing the data later in an online procedure. After acquiring
data from the testbed vehicle, all processing was carried out on
a Lenovo ThinkPad X32, which has a 1.8-GHz Pentium R(M)
processor and 1.5 GB random access memory. The laser scan
covers a range of 180◦ with an angular resolution of 0.5◦. The
processing is conducted at a rate of 10 Hz, which means that
less than one-third of the laser scans are used in processing,
compared with the scanning rate (≈37.5 Hz). The computation
cost of each frame is demonstrated in Fig. 14(a) at an average
of 140 ms/frame. Compared with the laser scan rate (10 Hz),
the current computation cost is high but not far from real time.
In addition, the number of moving and seed objects that are
simultaneously tracked in each frame is output in Fig. 14(b). At
the maximum, 12 moving objects were simultaneously tracked
at the same time. However, if we count both moving and seed
objects, more than 90 were simultaneously tracked.

G. Discussions and Future Studies

We have demonstrated the possibility of a laser-scanner-
based approach for the purpose of both enhancing driving safety

and traffic data collection. Despite positive results, there are still
many problems with respect to real applications. Some of these
could be solved by improving system implementations, while
others need further studies to find a solution. Here, we discuss
some of the more challenging issues that require more work.

1) Duplicated Courses: In Fig. 8, the start and end of the
experiment course are at different locations, while in data
acquisition, the testbed vehicle returned back to its start place,
and data were measured up until then. The reason that we cut
the duplicated course is that we failed to generate a consistent
map using the current system and algorithm. As we used
only one laser scanner covering the front 180◦, matching the
back-and-forth laser scans are difficult, particularly in such a
dynamic environment. For the application of driving safety, a
consistent map and global accuracy are not a must. However,
an algorithm to update a previously explored map in a highly
dynamic environment is required for traffic-data collection,
where omniview laser scanning is required to solve the revisit
problem.

2) Object Model and Classification Strategy: A parked car
or a person standing still is a temporarily static object. Some of
these might start to move suddenly, while others remain static
during the period when they are measured. If we keep tracking
all the moving-object-like ones, the computation cost will be
too high for an online system. A balance between accuracy
and time cost is made, and a brute forth tradeoff is taken in
this work. However, this is not the image of our final goal.
To improve computation efficiency while maintaining a certain
accuracy, a comprehensive and intelligent classification strategy
is required. Future study will be addressed in modeling the
different kinds of objects and making a classification method
using either a laser scanner or a fusion of multimodel sensing
technologies.

3) Accuracy Measurement: A comprehensive accuracy ex-
amination is important to lead a research product to a final
application, while it is always a big challenge. In the case of
counting false alarms or missed or wrong detections, things
are clear as long as we make a certain rule. However, if we
want to evaluate the state estimations, such as the speed and
direction of the detected moving objects, and analyze their
error correlations, things are complicated. Obtaining such a
ground truth from the moving objects in a real-world scenario
is quite difficult, and a microsimulator that can mimic the
true situation is required. Future study is required to develop
such a simulator and make an accuracy examination strategy to
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evaluate the distance from current system(s) toward potential
applications.

V. CONCLUSION

Motivated by two potential applications, namely, 1) enhanc-
ing driving safety and 2) collecting traffic data, this paper has
proposed a laser-scanner-based approach, where the localiza-
tion, mapping, moving object detection, and tracking issues are
formulated as a SLAM with object tracking and classification
problem, and a trajectory-oriented closure algorithm that uses
GPS and control inputs to assist for global accuracy and robust-
ness is proposed. The advantages of our approach are listed as
follows: 1) The host vehicle is able to know the states (e.g.,
speed, direction, and trajectory) of both itself and the objects
nearby in cluttered situations without relying on continuous and
always reliable GPS/INS outputs, and 2) the host vehicle can
record the speed and trajectory of both itself and the objects
(e.g., cars, pedestrians, and bicycles) that it observed along the
street so that many traffic data samples can be collected through
a single run. We demonstrated the possibilities of the approach
in high dynamic environments and discussed avenues for fu-
ture work.
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