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Our Goal

We focus on perception and reasoning techniques of
Intelligent vehicle.

We want to develop an intelligent vehicle of Omni-
directional eyes perceiving an environment of both static
and dynamic objects.

We want to reason based on real world sensing data, so
that to aware situations and predict potential risks.

We want to map dynamic environments, which contains
3D geometry, semantics and scene dynamics.

We want to study potential applications in car navigation,
traffic simulation, surveillance, etc.




Key Issues

Sensor Alignment
Localization ..
3D Mapping

Mobile Object Detection
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On-road Vehicle Trajectory Collection

Huijing Zhao, Chao Wang, Yubin Lin, Wen Yao,

Jinshi Cui, Hongbin Zha
Key Lab of Machine Perception, Peking University




Objective

= Developing an automated system to collect the synchronized
motion trajectories that characterize the full course of driving
maneuvers in real-world traffic scene.

Driver Vehicle

Real (Driver's operations) (Location, heading, speed etc.)
eéa

driving
data Driving behavior
collection (Lane change, overtaking, headway management etc.)

and

analysis e
Driving Context

(Road environment and traffic participants)




Contributions

= Asystem is developed to collect the vehicle trajectories through
on-road driving an instrumented vehicle with multiple 2D-
LIDARS.

= A method of simultaneous mapping with vehicle detection and
tracking (SMVDT) is developed to estimate the trajectories of
environmental vehicles through multi-lidar data processing.




Sensor Setting
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Sensor Setting
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Fusion of Multi-Lidar Data




Simultaneous Mapping with Vehicle Detection and Tracking

(SMVDT)
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Vehicle Model vs Partial Observations

Accounting partial observations: V.

1) Reliability items are defined to denote T GH Q% _
whether the corresponding features are I | dir,
estimated on direct observations or If I i it
inferred through the assumption on
vehicle model.g i C“O Vi Ocl

2) Reliability items are accounted in data i‘ l; =i
association and vehicle track estimation.

Vehicle Model
[tem Feature Reliability
directional vectors (z = 1, ... 4) U; ru;
corner points (z = 1,..,4) C; re;
a center point P rp
lengths on two vertical edges (1 = 1, 2) L; ril;




Experimental Setting
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Online Multi-Lidar vs A Front Radar
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IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS) 2012

A System of Automated Training Sample
Generation for Visual-based Car Detection

C. Wang, H. Zhao, F. Davoine, H. Zha

Key Lab of Machine Perception, Peking University
CNRS and LIAMA Sino French Laboratory . =4
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PKU-KLMP Platform
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Training sample collection for visual-based car detector

Omni-Laser Laser-based Car
& GPS Data Detection and Tracking

A 4

Omni-Image Laser-visual Fusion

A 4

Visual Sample Extraction

A 4

Visual Classifier Training




Duplicated Image Samples Removal




Orientation-based Sample Categorization




Results in Automatic Training Sample Extraction

IROS12




Results in Automatic Training Sample Extraction

O Vehicle runs 48.26km for 40 min
O 1526 trajectories, 5399 cars samples
O Sample detalls

Sub-
categorization

Right samples

Wrong samples




Training Samples Validation

O Ring Road training samples & Ladybug front camera




Training Samples Validation

O Ring Road training samples & Ladybug front camera
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IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2

On-road Vehicle Detection through Part Model
Learning and Probabilistic Inference

Chao Wang, Huijing Zhao, Chunzhao Guo, Seiichi Mita, Hongbin Zha



Motivation & Objective

e Achieve robust on-road vehicle detection
e Various appearance with different viewpoint
e Occlusions




Framework
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Probabilistic Viewpoint Map

e Example on Straight Road
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Experiments

e Training and Test Data

 Reference:c. Wang, H. Zhao, F. Davoine, H. Zha, A System of Automated Training Sample Generation for
Visual-Based Car Detection, IROS2012.

* Video images from a Ladybug3 camera
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Experiments

e Training samples
e Labeled with viewpoint class
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Results
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Results

 Numerical experimental results analysis

Detection results in precision/recall curve compare with DPM

Viewpoint estimation accuracy (with/without RSPVM).

Precision

04}

== Qur approach: with iewpoint map
0.3 ----| ==#=Our approach: without viewpoint map
=@ Deformable part model

- e R

T B e S et s
uﬂ 01 02 03 04 Flgc-:il 06 07 08 08 1
Viewpoint 1 | 0.88/0.76 | 0.04/0.10 | 0.0/0.0 0.08/0.14
Viewpoint2 | 0.15/0.20 |0.75/0.66 | 0.10/0.12 |0.0/0.02
Viewpoint 3 | 0.0/0.0 0.07/0.12 | 0.83/0.74 |0.10/0.14
Viewpoint4 | 0.14/0.22 | 0.0/0.0 0.08/0.13 | 0.78/0.65
V.1 V. 2 V.3 V.4

(a) Detection results on full visible vehicles
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Recall
Viewpoint 1 | 0.80/0.60 | 0.05/0.13 | 0.0/0.0 0.15/0.27
Viewpoint 2 | 0.21/0.30 | 0.68/0.55 | 0.11/0.13 | 0.0/0.02
Viewpoint 3 | 0.0/0.05 0.14/0.16 | 0.69/0.60 | 0.17/0.19
Viewpoint4 | 0.22/0.22 | 0.0/0.04 0.13/0.16 | 0.65/0.58
V.1 V.2 V.3 V.4

(b) Detection results on occluded vehicles




Conclusions

e This research proposed a framework for on-road vehicle detection with its focus
on vehicle pose inference based on detected part instances by addressing both
partial observation and varying viewpoints in one probabilistic framework.

e Geometric models describing the configuration of vehicle parts as well as their
spatial relations are learned for each dominant viewpoint.

e Viewpoint maps are generated on each typical road structure for probabilistic
prediction of vehicle at each location.

e Experiments have been conducted using Beijing ringroad data, results
demonstrated efficiency of the proposed work on on-road vehicle detection,
especially for the partially observed vehicles on varying viewpoints.



Wen Yao, Yubin Lin, Chao Wang, Huijing Zhao, Hongbin Zha
Learning from ones’ history
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Abstract

Motivations:

Recent Advanced Driver Assistant System (ADAS) research tries to improve system
intelligence to produce more naturalistic driving assistance by learning from human
driving behaviors. This requires large amount of labeled real driving data as a
prerequisite.

Extract data segments for specific driving behavior (e.g. lane change behavior)
modeling from large car data sequence is time consuming for manual work and
needs efficient and automatic extraction method.

Large amount of lane change behavior data can be recorded to form a database
for further data analysis/ behavior modeling/ trajectory prediction.

Contribution:
An on-roar driving data acquisition system is set up.
An efficient automatic lane change data segments extraction algorithm

Real lane change data are recorded in a database and used for further behaV|or _
modeling related research L

12:02:07
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Introduction

Human
Lane Change
Database

ADAS, tell me ifitis
safe to change lane
right now?

OK, I think it's safe
to change lane now

Driver ~ Vehicle

12:02:07 ADAS

%?q%{;%%sny 3DVCR Group, Department of Machine Intelligence



Introduction

= Why do we need to model human lane change behavior from real data

Require behavior
level model

Lane change prediction using CYRA model

Non-naturalistic
behavior model is not
sufficient

Trajectory selection from parametric data

3DVCR Group, Department of Machine Intelligence



Introduction

In order to build naturalistic driving behavior models, we need:
Large amount of real driving data
R 4 Data collection platform
Data segment extraction for target behavior from raw data
= D> Driving behavior segment extraction

A method to teach the ADAS system to give naturalistic driving assistance by
learning from real driving behavior data

= > Application based on human driving behavior learning (lane change trajectory
prediction in this work)

12:02:07
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Introduction

In order to study the interaction of
ego and surrounding vehicles
during lane change maneuvers,

synchronized acquisition of the
motion sequences in
is required.

% N

Ego Vehicle

GPS/IMU : trajectory
IMU : motion of steering handle

Traffic Synchronized
participants Calibrated

LIiDARSs : motion trajectory of surrounding cars

Camera : lane marker

12:02:07
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Research flow

Steering angle

1. On-road Driving Data Acquisition
GPS/IMU  Vehicle Parameters  Lidar Video

v Synchronized trajectories of
Laser Scanner _ ego and environmental
An instrumented vehicle for 2. Lane Change Data Extraction vehicles during lane change

on-road data acquisition by Ego vehicle  Traffic participants maneuver
human drivers

Offline data processing

Human
Lane Change
Database

Situation-based Trajectory Searching

Find a set of lane change data at similar initial situation

A lane change intention
IS detected v

Lane Change Trajectory Prediction
Parametric trajectory generation on end state prediction

Online risk assessment

12:02:07
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Research flow

Steering angle

1. On-road Driving Data Acquisition
GPS/IMU  Vehicle Parameters  Lidar Video

v Synchronized trajectories of
Laser Scanner _ ego and environmental
An instrumented vehicle for 2. Lane Change Data Extraction vehicles during lane change

on-road data acquisition by Ego vehicle  Traffic participants maneuver
human drivers

Offline data processing

Human
Lane Change
Database

Situation-based Trajectory Searching

Find a set of lane change data at similar initial situation

A lane change intention
IS detected v

Lane Change Trajectory Prediction

Parametric trajectory generation on end state prediction

Online risk assessment
12:02:07
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On road real driving data acquisition

Experimental scenario:
Urban high speed road, mainly straight road

Fluent but heavy traffic so that there is great chance for lane change behavior.
Data acquisition using an instrumented vehicle mainly recording:

Steering wheel angle
Wheel speed
Range data from LIDAR

On-road data acquisition on
Beijing's 4" ring road
12:02:07
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On road real driving data acquisition

Synchronized trajectory collection of the ego and surrounding vehicles

Traffic participants trajectories
in ego-centered frame

On-road data visualization An extracted lane change
12:02:07 from MODT module behavior segment in ego-frame J

é%‘\%? %}g]{]v%%sny 3DVCR Group, Department of Machine Intelligence




Research flow

Steering angle

1. On-road Driving Data Acquisition
GPS/IMU  Vehicle Parameters  Lidar Video

v Synchronized trajectories of
Laser Scanner _ ego and environmental
An instrumented vehicle for 2l anechanostajEkt pe vehicles during lane change

on-road data acquisition by Ego vehicle  Traffic participants maneuver
human drivers

Offline data processing

Human
Lane Change
Database

Situation-based Trajectory Searching

Find a set of lane change data at similar initial situation

A lane change intention
IS detected v

Lane Change Trajectory Prediction

Parametric trajectory generation on end state prediction

Online risk assessment
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Automatic lane change data extraction algorithm

Real driving data is noisy and
requires efficient lane change
behavior data extraction algorithm
to generate large amount of O Lane Change
samples for behavior modeling

Right Lane Change

Left Lane Change

Steering wheel data

Work flow of automatic lane change behavior data extraction

Operation labeling Manual validation for
________________________________________________________ - training sample selection
!
Segmentation (Split and Merge) Feature extraction Feature extraction and selection
I .
Candidate Generation | Feature selection

Lane change detection
G,

N BERREE o]
71 I I e R 18| LY LTl A0 s

W Detected lan ~. 1

b , P : : I changes | SVM based ,
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Automatic lane change data extraction algorithm

fuos
Extraction steps and results of %15%" *“Wﬂ M M H['H
each step f”?ﬁf | F' MW 1 "+
We can handle multiple cases " v ;
Seqmertaton esuts Vldaion rosuls

which might be confused in
real driving situation

Case A:

Case B:

Case C:

Steering Angle(degree)
¥ -—"_4 £

Case D: I\—\

| fﬁ‘x
Case E: 1 ‘_ﬁ_‘J_&‘
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Automatic lane change data extraction algorithm

Feature 1
Feature definition and selection
I Positive
i - I Negative
7 ) Polynomial fitting positive
6 Polynomial fitting negative
g s |
g ji r—S———
% 3 o 02 04 06 08 ] [E] 14 16
o 2 Feature 2 ] - Feature 3
<
g o
8 -1
@ 2
-3

48278 48282 48286 4.829 x107

Time (ms) vz
2t Gap time | Ratio i ‘ '
ap time [ Ratio time 0z
(to+t2) :
min(t,t,) Minmaneuver time |
max(ty, t;) Max maneuver time i 0ot
0.1 I
Dby Peak steering value for each turning maneuver ol | UM DR N G 08 6 nl-\lflf"f‘![‘!‘l!i'.ll .
Feature 6 Feature 7
@y Yaw difference of firstturning/
a, Yaw difference of second turning
Yaw difference produced by a candidate maneuver
lay + ;| :
pair
11:12 Time of each turning maneuver il “L_M.L]L]LL_

ay, Yaw difference produced by each turning maneuver
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Extract ego-vehicles’ lane change trajectories

Automatic lane change data extraction algorithm

Day Round Label T F TP Rate TN Rate Accuracy
P 48/50 2/50
R1 96% 97.8% 97.6%
N 356/364 8/364
D1
P 38/42 442
R2 90.5% 97.6% 96.8%
N 361/370 9/370
P 42/45 3/45
R1 93.3% 99.7% 99%
N 372/373 1/373
D2
P 59/64 5/64
R2 92.2% 97.7% 97.1%
N 503/515 12/515
P 47/50 3/50
R1 94% 98.8% 98.2%
N 397/402 5/402
D3
P 53/57 4/57
R2 93% 97.4% 97%
N 665/683 18/683

12:02:07
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Research flow

Steering angle

1. On-road Driving Data Acquisition
GPS/IMU  Vehicle Parameters  Lidar Video

v Synchronized trajectories of
Laser Scanner _ ego and environmental
An instrumented vehicle for 2. Lane Change Data Extraction vehicles during lane change

on-road data acquisition by Ego vehicle  Traffic participants maneuver
human drivers

Offline data processing

Human
Lane Change
Database

Situation-based Trajectory Searching

Find a set of lane change data at similar initial situation

A lane change intention
IS detected v

Lane Change Trajectory Prediction
Parametric trajectory generation on end state prediction

Online risk assessment

12:02:07
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Lane change trajectory prediction

Lane departure warning application

Predict lane change behavior according to lateral offset, yaw angle, etc.
Ego-vehicle states = lane changing or not

Driver intention prediction
Predict lane change behavior according to driver operation / driver gaze direction
Driver-states = driver is going to change lane or not

Our trajectory prediction for risk assessment

Judgingif it is the right time to change lane according to the lane change habit of
this driver

Ego-vehicle states + surrounding vehicle states + driver history lane change

database = a trajectory which the driver is most probably to execute if he changes
lane right now

SR
12:02:07 iU o an <l

Q) PEKING

Y7 UNIVERSITY 3DVCR Group, Department of Machine Intelligence



State space definition for lane change prediction

A lane change maneuver (t,t,)

y
TR
@-----
HV
-
Ego Frame FtS o
State Definition
Initial state S at t, S, S* = (Syys Sces Ste STR)

Shv.cr e Tr = (POS, Spe., Acc.) at F

End state S* at t,

12:02:07
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Lane change trajectory prediction

O Samples in the human driving database

@ The current state when a lane change
intention is detected in online processing

% Neighborhood of the current state
with a Distance Measure D

y
TR TF

- ---->
HV E
= >

Ego Frame F

TR TF TR
ap---- ap---> a@---->
HV F ~ HV F
€= (%———-> € ) &--">
X
Ego Frame F Ego Frame F

12:02:07 Initial state in a lane change
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Lane change trajectory prediction

End State Space

O End states of the neighborhood samples
in the human driving database

@ A predicted end state

A predicted lane change trajectory

Initial State Space
12:02:07
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Lane change trajectory prediction

Quintic polynomial model

= Given the initial state the predicted end state S; = (x(t1), ¥(t1), ¥(t1),y(t,)) of a
lane change behavior, a quintic polynomial model is used to generate a smooth
trajectory as the estimation:

o y(x) = ap + ayx + azx? + azx® + a,x* + agx®
satisfying y(x1) = y1;¥(0) = y'(0) =" (%)) = y"(0) = y" (%) = 0
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A result of lane change trajectory prediction

.

(AR L2010 140,04

LG40

GREY--all recorded

_:____*__lane change

YELLOW--predict
trajectory of the input
GREEN-—-selected
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used for prediction
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Lane change data analysis

Traffic participants’ trajectories in ego-vehicle local frame
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Lane change data analysis

Traffic participants around ego-vehicle

Safety zone

= With large amount of collected trajectories of adjacent traffic participants, we find an area
which implies the driver’s personal evaluation of safety during lane change
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Monocular Visual Localization using
Road Structural Features

Yufeng Yu 1, Huijing Zhao 1, Franck Davoine 2, Jinshi Cui 1, Hongbin Zha 1
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Motivation

Point based localization Lane based localization Verticle line based localization

BB 5° ot e Y 5 5
i ‘:*Il’ "b- imﬁ . . ‘-'l'f‘ r .

moving objects unclear lane unclear verticle line

Combine all the features, define a Road Structural feature (RSF)

RSF ={L,,L,,L,P|



System Framework

‘ 2D Road Map |

A

Vehicle Pose
Prediction

A A

Vehicle

Motion Model

\4

Road Structure
Prediction

Video Data

A 4

\ 4

Point and Line
Features Extraction

RSF Detection

A

RSF-based
Vehicle Pose Estimation
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Road Structure Prediction

Intersection |
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-
ALl gl
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Vision field of the

on-board camera N
-Xf
1’,3( ad line

YiLY, / on the map

Image Frame




RSF Detection
-

Points detection
and tracking

Image Sequence

< . L
G AT i
Line classification
d*(1.,R.e) = KR, 2 S
K]

Line detection \ ] 1 A




RSF-based Vehicle Pose Estimation

1) Sample RSF candidate with
Cosr ={l.1, €L, l;eL,,u=v,p,p, P}

2) Calculate x, with given Cxer

|, <1, =v, =KRd, | R _RR" \ .
R=(1-S)"(1+9S) e . t, =t —Rty
F=K [trel] Rrel K
0 —< b R T ' (= trel
s={c 0 -a|[ P, Fp; = |It.|] is calculated
b a 0 p,Fp, =0 / by the speed data
ITKRd, =0

3) Evaluate x, using an observation error measurement

N

E=E +AE, Zlength (1) [ K dj +/12(d (0, Fp))+d*(p;,F'p,))




Experlmental Results (Normal Traffic)
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Experimental Results (Straight Road)
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Experimental Results (Complex Situation)
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Scene Understanding in a
Large Dynamic
Environment through a
Laser-based Sensing

H. Zhao, Yiming Liu, X. Zhu, Y. Zhao, H. Zha




Outline

® Introduction

® Problem formulation
® Framework

® Experimental results
® Summary

® Future work




Introduction — Data Acquisition

® We use a moving platform with SLAM to
acquire the range data of the whole
environment

Laser Scanner

L3,L1L2

Our Platform




Introduction — Data Acquisition
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Introduction — Data Acquisition

3D Representation | 2D Representation

Equally convertible to each other
Same data organized in two different forms




Problem Formulation

@ People can easily understand the scene

Road surface
3D Laser Points 2D Range Image




Introduction - Our Objective

® We aim to provide a map with high-level
representations.

@ This map enables a robot to have
semantic knowledge of the environment
which Is large and dynamic, such as
objects, their types and so on.

|

Make the robot understand the scene!




Problem Formulation

® Input - Range Image




Segmentation

and

Classification




Traditional Method

® Sequential framework
e segmentation -> classification

® Challenges

e Many kinds of objects in complex environments

e Based on an uniformed segmentation rule to all kinds of
objects

o Different objects might be segmented into one
o One object might be segmented into different pieces




Framework - Flowchart




Over-segmentation

O

e

Scanline

Segmentation
s~

Region Grow




Plane extraction

@ First, we separate every scanline into
straight line segments.




Plane extraction

@ Then, we grow all these straight line
segments into planar regions.




Plane Extraction Results

No Plane Segments




Over-segmentation

Scanline

Segmentation
s~

Region Grow

Contour
Detection

S~

Region Grow




Contour Detection

Point. contour point




Over-segmentation Results




Flowchart Review

Calculate the
merge probability

ﬁ
T
6




Joint Merge with Classification

P(s.; 1) e D Py, =111)-P(y; =1[1)-P(s..; | Yi,; =1, 1)

/

The probability for a segment
to be a certain class
Segment Classification

Given object class, the likelihood of two
segments be the measurement to a single object




Segments Classification

2 Py =1[1)-P(y; =11

oS

P(y; =111) (Uy(k)—lll)'HP(y(k’—lll)

i

Points Cloud Classification

Classification




Joint Merge with Classification




Segments Classification

® Point Cloud Classification
e SVM

® Line Segment Classification
e Naive Bayesian Classification




Training Sample

® We only use a small number of samples
to train the point cloud classifier.

Building
Road
Tree

Car
People
Bush
Bus




Feature Selection

® SVM - We selected 7 most discriminative
features among more than 30 features

mean of height values
variance of a histogram distribution on normal vectors
| dg || major picks of a histogram distribution on normal vectors

2 ratio of widh vs. length

A \ds)




Feature Selection

@ Nalve Bayesian Classification - We selected 6
features Teaure || Defmton




Likelihood

@ 7 classes, 7 models
fitting for road and building
fitting for car, bus and bush

fitting for people
fitting for tree

K
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Final Segmentation |
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Summary

® We develop a framework of joint segmentation
and classification.

® The experimental results are encouraging.

® But there are still to be solved

* Implementation of the framework needs to be improved.

e Classification accuracy, especially people, are not
satisfying due to limited training samples and partial
observation.




Future work

@ Improve our framework

 How to deal with the segments containing
no line segment

e Points should be a special form of lines

® Make more training samples
* \We can make it together
e Our data are available in
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Computing Object-based Saliency
In Urban Scenes Using Laser Sensing
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Motivation

ODbject discovery from mobile laser scanning.

-_:rrf' L ‘,';.:'."", e
P £
e S ::}r}l': }//
pr - iy

"

N\

)

i

7
>

s e
et 1 F Y
===
T fp e
— ;y//// o
=i =

\\\\\;

\

\

Al

\

. Traffic sign
Signpost
Building

. Car

. Road lamp

3DVCR Group, Department of Machine Intelligence

FIR) PEKING
%) UNIVERSITY



Background

Different applications may concern different objects.
Put more focus on the objects of interest.

3DVCR Group, Department of Machine Intelligence




This research

Objective: Compute the object-based saliency of laser
points

Computing Object-
based Saliency

Laser points — —> Object Detection

Stepl Step2 Step3
Geometric Object Object-based
Feature *| Candidate > Saliency
Extraction Generation Computing

ﬁf'm*? %lf:q]mv%%srry 3DVCR Group, Department of Machine Intelligence



Experimental platform
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Stepl: Geometric Feature Extraction

Four types of geometric feature
Vertical line, horizontal line, vertical plane, horizontal plane

Flowchart

............................................ %

Starting from the seeds, all
neighboring pixels with similar pixel-
level features (e.g. norm) are grown

in an iteration

1. Estimating some pixel-level
features

2. Based on such features, a
decision tree is applied to select

seeds

€7$3 %lf:q]mv%%sm 3DVCR Group, Department of Machine Intelligence



1. Geometnc Feature Extractlon

Extraction results

Vertical Line | . Horizontal Line

A

¥ ’

d -L m” T s—— L Y 24 - st RA -
Vertlcal Plane Horizontal Plane

3DVCR Group, Department of Machine Intelligence ey e —




2.

Object Candidate Generation

For each class, the objects can be considered as

combination of geometric features

Car: several surface planes
Road lamp: a long pole
Traffic sign: a big board with some supporting sticks

The object candidates are generated by finding
corresponding combination of geometric features

Geometric

Voting
Candidate -
Centers

Clustering
Centers

%%q]mv%%sm 3DVCR Group, Department of Machine Intelligence




2. Object Candidate Generation

é%‘\%? %}g]{]v%%sny 3DVCR Group, Department of Machine Intelligence




3. Object-based Saliency Computing

Given the object candidates, the object-based saliency
is depend on
Type & size of the related geometric features

Spatial relationship of different geometric features
To contain these two information

A graphical object representation is introduced

Flowchart

Salluelnt
N\ Objects /

Calndndates

€7$3 %lf:q]mv%%sm 3DVCR Group, Department of Machine Intelligence




3.1 Graph Generation

Objective: build a invariant graph representation for
each object candidate

Node: Type & size of geometric features

Edge: Spatial relationship of different geometric features

An example

Object
coordinate

TR M SO TN NN

ﬁf'm*? %lf:q]mv%%srry 3DVCR Group, Department of Machine Intelligence




3.1 Graph Generation

Some model graphs of salient objects

Extracted
geometries ‘

2
i 30 (f WO

representation

ENE IP}EKJN%SITY 3DVCR Group, Department of Machine Intelligence




3.2 Graph Matching

Objective: Given a model graph G,,, = (N;;,, Er,) & @
data graph G4 = (N4, E;), a matching score will be
evaluated between them

Step 1. run inexact graph matching

Only concern edge attributes
Generate 2 sub-graphs G,,s = (Npns) Ems) & Ggs = (Ngg, Egs)

Step 2. evaluate matching score

card(Nm_,) card(N gs) card(Nm) card(Ng)
D(Gy, Gg) = max(z Sy s Z Nk )/max (Z ""Zk=o SN‘::;)

where N¥ denotes for the kth node in node set N, L
and $,, is the area of node n's corresponding geometric feature _ JSliSR

é%‘\%? %}g]{]v%%sny 3DVCR Group, Department of Machine Intelligence



Experiment

1. Highway scene (the 4% ring road, Beijing)

Collecting time cost: 35 minutes

Data volume: about 14,300,000 laser points

Sample: 26 model graph for 8 object class

Processing time: 18 minutes (on a 2.8GHz & 8G P(C)

elass Toal Highlighted Correctly Precision Recall
Higlhghed
car 01 00 20 0848 0918
bus 217 22 20 0909 0741
traffic light T 7 G 0.857 O.857
road lamp 219 196 196 0.969  0.904
signpos! 13 1% 11 0.611 0.84¢
traffic sign 62 71 36 0,789 0903
building 33 43 d 0930 0754
road belt X5 33 25 0758 0758
all 466 456 404 0.886  0.867

¢IN) PEKING
@ UNIVERSITY

3DVCR Group, Department of Machine Intelligence




Experiment

3D view of salient objects

ENE IP}EKJN%SITY 3DVCR Group, Department of Machine Intelligence

. Car
. Road lamp
Traffic light

. Traffic sign
Signpost
Road belt




Experiment

3D view of salient objects

Bus . Traffic sign
. Road lamp Building
Traffic light Road belt

é%&%? %%I(JV%?{SITY 3DVCR Group, Department of Machine Intelligence




Experiment

2. Street scene (Street ShangDi, Beijing)
Collecting time cost: 30 minutes
Data volume: about 13,210,000 laser points
Sample: 38 model graph for 11 object class
Processing time: 20 minutes (on a 2.8GHz & 8G P(C)

ﬁf'm*? %lf:q]mv%%srry 3DVCR Group, Department of Machine Intelligence




Experiment

3D view of salient objects

. Car . Traffic sign

Bus Signpost
. Road lamp Road belt

. Trash box Building

ﬁf'm*? %lf:q]mv%%srry 3DVCR Group, Department of Machine Intelligence




Experiment

3D view of salient objects Add graph
- l L_ vy .

Signpost
Building

. Road lamp . Ad board

ﬁf'm*? %lf:q]mv%%srry 3DVCR Group, Department of Machine Intelligence



Experiment

3D view of salient objects Add graph
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Summary

An object-based saliency computing system that works
on urban laser sensing data

We can label the regions of objects that belong to the salient object classes

The computation and time cost of the entire scene understanding system
would reduce greatly since it only focus on those salient objects

In the future

Context needs to be applied, as no high-level knowledge is introduced
currently

Combine with advanced detection & classification methods

€7$3 %lf:q]mv%%sm 3DVCR Group, Department of Machine Intelligence



Zhao, H., et al., Detection and Tracking of Moving Objects
at Intersections using a Network of Laser Scanners, IEEE
Trans. ITS, vol. 13, no.2, 655-670, 2012.

ORING AN INTERSECTION USING

A NETWORK OF LASER SCANNERS

H. Zhao, J. Cul, H. Zha,
Peking University
K. Katabira, X. Shao, R. Shibasaki,
University of Tokyo
zhaohj@cis.pku.edu.cn




Background (1)

Analyzing and Monitoring
the traffic behavior in an
Intersection

Efficiently and accurately
COLLECTING the TRAFFIC
DATA in an INTERSECTION

Real-timely DETECTING
DANGEOUS SITUATIONS.




Background (2)

 Vision-based methods suffer mainly on the
following difficulties

— Occlusion

— Computation Cost Ce.g. the camerais

_ inati required to be set on a
lllumination Change tall position.

monitoring intersection

from the above
To solve the problems % _

1. Restrict camera’s setting condiy/ €-9. monitor O
vehicles of

2. Target on a simplified situati limited lanes, do
not discriminate
moving objectsy




Objective

This research propose a novel system for
monitoring and collecting detailed traffic data,
with easy setting condition, in an environment of
complicated traffic behavior, such as intersection,
using a network of single-row laser scanner.
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Processing Modules I
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Object Model

Feature parameters (vi=dirv)
and their reliabilities




Object Detection Results




Object Detection Results
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State  t*!

Observation g*

Case 1
t*! has support vectors

g" has support vectors,
and valid cormer points

g€,

Single
prediction

gv,

«

Cage 2
k-1
U7 has support vectors

g“ has support vectors,
but no valid corner point

space to tC;

FPrediction ’%)

Case 3
k-1
U7 has support vectors

g% has no support vector,
nor valid corngr point

T LA LLE L L
]

e
e

Prediction
space o tp

.|r.|,... :
l-lnll-l.fil|:l|ll-l|

= gp )

Case 4
t*? has no support vector

g“ has no support vector

Single
prediction

Cage 5
t*? has no support vector
ok has support vectors

Single
prediction
Punished jor
state jump




Laser Scanner

Video Camera

Experiment

Peking Univ.

Sports Center

L&l

Overhead Bridge

Peking Univ.
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Results

objects are occluded
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Detection Results

Accuracy Analysis

2007.10.13, 10:00-10:20

type

perfect

IMerge

Nnonc

d.ratio

p.ratio

car

6915

89

0.988

0.907

bicycle

1571

24

0.986

0.938

pedes.

799

130

0.910

0.551

SUIIL.

9785

243

0.977

0.864

Tracking Results

type

perfect

broken

total

t.ratio

cdl

030

22

675

0.975

bicycle

322

351

0.940

pedes.

30

17

0.805

SUIIL.

988

1063

0.960




Trajectory Clustering

Moving Direction

Straight:

Left Turn:

Right Turn:




Trajectory Clustering

Bicycle ¥ Moving Direction

Straight:

Crossing:

Turn along road:

i Y




Trajectory Clustering

Pedestrians

Moving Direction

Pattern 1:
|

Pattern 2:

Pattern 3:
|




Path Model

)

[
]

H ~ N(O, o'

=|P-w))-v

Each cross-section is represented by a Gaussian

A path is model as a sequence of Gausians



Trajectory Evaluation

Likelihood between a trajectory T, and apath 1 s
evaluated

Ly
P(T |T;) H P(T"IT;) 1 T2 is atrajectory point
p=1

Ly ) )
= H P(T,”|T;) /I Tj isthe nearest cross-section to T’
p=1

1 —d 2/20';-'2

— €
VZHU}

P(Tkp |FJI) =



Trajectory Classification

Given a trajectory T. , the objective is to classify it with in
class={I,I5,...[,[,}

n a-

as
I, =maxarg P(I' | T.)
where 1
P(I;|T.)=—P(T.|I;)P(I;)
n
P(T, | T.) == P(T. |T,)P(T.)
and T
P(T.|T,) = [ [(P(T. |T}) < &), {01}
P(T.|T,) can be either O or 1.

P(T.IT,)=1 ifandonlyif Vi P(T|L})<¢



Path models
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Example 1: Example 2:
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Example 3: Abnormal Trajectory Example 4: Abnormal Trajectory




Real Abnormal Trajectory
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Real Abnormal Trajectory
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False Abnormal Trajectory

frame 3357*
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Contact Info:

#7r& (Huijing Zhao) Tel: 010 62757458
Email: zhaohj@cis.pku.edu.cn
http://www.cis.pku.edu.cn/faculty/vision/zhaohj/
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