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Introduction

This research focus on the perception and reasoning 
techniques using either an intelligent vehicle or a network 
sensing system or a collaboration of them. 

We have a goal of developing an intelligent vehicle of Omni-
directional eyes monitoring both static and dynamic objects when
it cruises around a large dynamic environment; and a network 
sensing system that monitoring constantly the dynamic objects in
a cluttered environment. Based on such platforms, we study 
methodologies on perception, modeling and reasoning of a 
dynamic procedure and a dynamic traffic scene, where the 
fundamental issues such as multi-modal sensor fusing, 
calibration, SLAM (simultaneous localization and mapping),  
moving object detection and tracking, behavior modeling and 
situation awareness, abnormal detection, semantic mapping, as 
well as potential applications are focused.

Monitoring a traffic scene through network sensing

Monitoring a dynamic procedure and scene using an intelligent vehicle
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• Sensing a dynamic environment
• Learning scene semantics
• Simulating a traffic scene

Research Objectives

Q: Why always traffic jam or accidents?

A: We need to sense the data of both motion (e.g. people, 
cars) and motionless (e.g. building, tree, road, traffic sign) 
objects at the environment, analyze their relations, locate the 
problem and find a possible solution.

?? ?

Q: Where am I?

A: Locate “I” to the virtual space.
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Contributions
In this research, a system of detecting and tracking 

on-road vehicles using multiple horizontal laser scanners 
on a vehicle platform is developed. 

Algorithms are developed with focuses on solving 
data association of simultaneous measurements to single 
objects, and state estimation in case of partial 
observations in dense traffic situations. 
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1) u is distinct in each side of a vehicle;
2) u is equal in the measurements of different laser scanners.

Grouping overlapped measurements: by matching u with v, 
1) the overlapped measurements to the same vehicle side 

can be associated;
2) mis-grouping the data measurements can be avoided.

Accounting partial observations:
1）Reliability items are defined to denote whether the 

corresponding features are estimated on direct 
observations or inferred through the assumption on vehicle 
model.

2）Reliability items are accounted in data association and 
vehicle track estimation.

(b) Vehicle Model
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This research is motivated by two potential applications: 
(1) Detecting and tracking the moving objects at the 

ego-vehicle’s 360°local surroundings, so as to assist for 
safety driving; 

(2) Obtaining the motion trajectories of other traffic 
participants, so as to support for driving behavior 
modeling and reasoning.

This research studies at the on-road traffic environment, such 
as freeway, which is free of intersections, traffic signals, and
pedestrians. So that the algorithm focuses on the detection and 
tracking of vehicles only.
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Experimental Results

Contributions: In this research, a system of detecting and tracking on-road vehicles using multiple horizontal laser 
scanners on a vehicle platform is developed. Algorithms are developed with focuses on solving data association of 
simultaneous measurements to single objects, and state estimation in case of partial observations in dense traffic situations. 
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(b) Vehicle Model

Motivations: (1) Detecting and tracking the moving objects at 
the ego-vehicle’s 360°local surroundings, so as to assist for 
safety driving; (2) Obtaining the motion trajectories of other traffic 
participants, so as to support for driving behavior modeling and
reasoning.

Scenario: on-road traffic environment, such as freeway, 
which is free of intersections, traffic signals, and 
pedestrians. 
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1) u is distinct in each side of a vehicle;
2) u is equal in the measurements of different laser scanners.

Grouping overlapped measurements: 
by matching u with v, the overlapped measurements to the 

same vehicle side can be associated.

Addressing partial observations:
1）Reliability items are defined to denote whether the corresponding 
features are estimated on direct observations or inferred through the 
assumption on vehicle model.
2）Reliability items are accounted in data association and vehicle track 
estimation.
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Lane Change Trajectory Prediction by 
Using Recorded Human Driving Data

1) State Space Definition

2) Trajectory Prediction Approach

1)Synchronized motion trajectory collection of the ego and 
surrounding vehicles (Zhao, IV09)

2)Lane change samples                                       extraction

Work Flow

Introduction

Wen Yao*, Huijing Zhao*, Philippe Bonnifait** , Hongbin Zha* 
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**the Universit´e de Technologie de Compiegne,

Heudiasyc CNRS UMR 7253
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Experimental Results

Contributions: 1) A human driving database is generated through on-road data collection using an instrumented vehicle, which consists 
synchronized trajectories of ego vehicle and surrounding traffics during lane change maneuvers; 2) A lane change trajectory prediction is 
developed by referring to the human driving data of similar situations.

Motivations: 1) Efficiently collect human driving data using an instrumented 
vehicle to build a human lane change database; 2) Predicting human driver’s 
potential lane change trajectory by referring to the database for risk assessment 
which helps the driver to decide whether to change lane.
Scenario: urban traffic scene, such as freeway. We mainly focused on lane change behavior 
on straight road currently, which is very common in daily driving.

http://www.poss.pku.edu.cn
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1. Human Driving Database 
Generation

human driving data acquisition using 
an instrumented vehicle

2. Lane Change Trajectory 
Prediction

lane change intention is detected 
as the trigger of this model
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Probabilistic Viewpoint Map

A Probabilistic Framework for 
Occluded Vehicle Detection

Chao Wang1, Huijing Zhao1, Chunzhao Guo2 , Seiichi Mita3 , Hongbin Zha1

Abstract
In this research we propose a novel probabilistic framework for
occluded vehicle detection on road scene. We build probabilistic
vehicle’s viewpoint map on image with the road structure priority 
from GPS and road map. With different viewpoints, part‐based 
vehicle detectors are trained to find vehicle part candidates, and a 
probabilistic model for parts’ locations relative to vehicle’s center 
is learnt to infer the vehicle’s viewpoint and occluded parts. The 
framework is evaluated on data from Nagoya downtown and 
Beijing freeway.
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Determine the viewpoint of vehicle in different place according to 
the map priority. The probability can be obtained by traffic rules 
and large real data statistic analysis. 
We divide the multi‐view vehicles into 4 classes according to 
viewpoints. For each viewpoint class, probabilistic map is 
generated by considering the road structure. e.g. 
P(view=viewpoint2|map=StraightRoad)
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Train part detectors based on HoG features. Using unsupervised 
method, automatically select most representative parts for detectors, 
and record each part’s position for parts location distribution model 
learning. The part detectors are training in each viewpoint class.
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Monocular Visual Localization using Road Structural Features

Yufeng Yu*, Huijing Zhao*, Franck Davoine+, Jinshi Cui*, Hongbin Zha*

Camera

GPS/IMU
Motivations: 1) Precise localization is an essential issue for autonomous driving applications, while low-
cost GPS can not meet such requirements ; 2) General visual-based localization algorithms use point 
feature, which is highly affected by the moving objects in a normal traffic scenario; 3) Line segments with 
three perpendicular directions, which are road's longitude, latitude and vertical directions, are stable in 
rotation estimation and those on environmental cars provide additional supports.

Scenario: Major roads in downtown Beijing, which are structured and with intense dynamic traffic.

Contributions: 1) We designed a novel feature named Road Structural Feature (RSF), which is robust dealing with moving objects, for on-
road localization. 2) We proposed a real-time precise visual localization method based on RSF, and the experiment showed good performance.
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Given: A rough 2D road map with roads' directions and intersections' positions
Solution: 1) Get the camera's Field of view on the map

2) Project the road's perpendicular axes onto the image plane

*Key Lab of Machine Perception, Peking University, Beijing, China
+CNRS, LIAMA Sino-French Laboratory, Beijing, China

Contact: 
Yufeng YU, yuyufeng@pku.edu.cn

Experimental Results

RSF Detection
Given: video data, predicted road structure
Solution: 1) Detect and track general feature points

2) Detect general line segments, then label them with a distance measure
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Scene Understanding in a Large Dynamic 
Environment through a Laser-based Sensing

Huijing Zhao, Yiming Liu, Xiaolong Zhu, Yipu Zhao, Hongbin Zha
Key Lab of Machine Perception (MOE), Peking University, Email: zhaohj@cis.pku.edu.cn

Introduction

Objective
We aim to provide a map with high-level

representations. 
This map enables a robot to have semantic

knowledge of the environment which is large 
and dynamic, such as objects, their types and 
their spatial relationships.

System Flowchart

Experimental Results 
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Object Detection Using 3D Street Data
Key Lab of Machine Perception (MOE), School of EECS, Peking Univ.

Yipu Zhao zhaoyp@cis.pku.edu.cn

Introduction

It becomes a well-known technology that a low level
map of complex environment containing 3D laser points
can be generated using a robot with laser scanners. Given a
cloud of 3D laser points of an urban scene, this paper proposes
a method for locating the objects of interest, e.g. traffic signs
or road lamps, by computing object-based saliency. Our major
contributions are: 1) a method for extracting simple geometric
features from laser data is developed, where both range images
and 3D laser points are analyzed; 2) an object is modeled as a
graph used to describe the composition of geometric features;
3) a graph matching based method is developed to locate the
objects of interest on laser data. Experimental results on real
laser data depicting urban scenes are presented; efficiency as
well as limitations of the method are discussed.

Approach

http://www.poss.pku.edu.cn/people/zhaoyp

Graph-based Object Detection

* Y. Zhao, et al., “Computing Object-based Saliency in Urban Scenes Using Laser Sensing”, 
2012 IEEE International Conference on Robotics and Automation

Learning-based Object Detection
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2D-LIDARs’CalibrationUsingMulti-Type
GeometryFeatures inUrbanOutdoorScene

Mengwen He alexanderhmw@gmail.com
Huijing Zhao zhaohj@cis.pku.edu.cn

Introduction
For a multi-LIDAR system (Fig.1), calibration is
essential for collaborative use of LIDAR data. In
our research, we developed a 2D-LIDAR calibra-
tion method using 3D point-clouds alignment.
In order to enable the calibration method work
in urban outdoor scene, we proposed a alignmen-
t method based on multi-type geometry features
extracted from 3D point-clouds of urban out-
door scene (Fig.2).

Figure 1: POSS-V Multi-LIDAR System

Figure 2: Multi-Type Geometry Features

Method Overview
Suppose a LIDAR, called as the reference LI-
DAR, has been calibrated with mobile platform
and would produce undistorted 3D point-cloud.
Whenever a new LIDAR, called as the target
LIDAR, is introduced to the on-board system,
it could be calibrated by alignment of 3D point-
clouds from reference and target LIDARs to find
its geometric transformation to the mobile plat-
form. [1, 2]
This research aims at an online self-calibration,
therefore, an approach is proposed by using
multi-types of geometric features (Eq.1) in ur-
ban outdoor scene to cope with the challenges
such as small overlapped area, different view-
points, occlusion and scene dynamics.

G = {P, {φ, fφ}, {μ, σ2}} (1)

P : 3D point-set {pi}
φ : Geometry type descriptor
fφ : Parametric equation
μ : Confidence degree, E(fφ(pi)

2)
σ2 : Noise level, D(fφ(pi)

2)

References
[1] M. He, H. Zhao, F. Davoine, J. Cui, and H. Zha,

“Pairwise LIDAR Calibration Using Multi-Type 3D
Geometric Features in Natural Scene,” in IEEE/RSJ
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2013.

[2] M. He, H. Zhao, J. Cui, and H. Zha, “Calibration
Method for Multiple 2D LIDARs System,” in IEEE
Int. Conf. Robotics and Automation (ICRA), 2014.

Experiments
Experiments are conducted using the data sets of an intelligent vehicle platform POSS-V (Fig.1)
through a driving in the campus of Peking University (Fig.3).

Figure 3: Outdoor Environment in PKU (Left); 3D Point-Clouds Misalignment before Calibration (Right)

We semi-automatically extracted 3 types of matched geometry features (Fig. 4 right) by region grow
algorithm from the 3D point-clouds of selected calibration area (Fig. 4 left). Then we used the
optimization method defined in [1] to align matched geometry features.

Figure 4: Selected Calibration Area (Left); Extracted Matched Multi-Type Geometry Features (Right)

Calibration Verification (Accuracy and Robustness)
Feature Geometric e1 without Accuracy e2 with Error Ratio
Types Features noisy features Evaluation noisy features = e2/e1

Point (P) 0.03232 Bad 0.04615 1.427
Mono Line (L) 0.07797 Bad 0.15548 1.994

Plane (PL) 0.01939 Good 0.05878 3.031
P + L 0.01363 Good 0.01429 1.048

Dual P + PL 0.00980 Excellent 0.00993 1.013
L + PL 0.02471 Good 0.05510 2.229

Triple P + L + PL 0.00981 Excellent 0.00989 1.008

Alignment in Calib. Area

After alignment of geometry features, we aligned
corresponding 3D point-clouds, and also cali-
brated the target LIDAR L3 in theory [1, 2].

Alignment in Test Area
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